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Abstract. In this paper we continue the study of a strict extension of
the Computation Tree Logic, called graded-CTL, recently introduced by
the same authors. This new logic augments the standard quantifiers with
graded modalities, being able thus to express “There exist at least k” or
“For all but k” futures, for some constant k. One can thus describe prop-
erties useful in system design, which cannot be expressed with CTL, like
a sort of redundant liveness property asking whether there is more than
one path satisfying that “something good eventually happens”, making
thus the system more tolerant to possible faults. Graded-CTL formulas
can also be used to determine whether there are more than a given num-
ber of bad behaviors of a system: this, in the model-checking framework,
means that one can verify the existence of a user-defined number of coun-
terexamples for a given specification and generate them, in a unique run
of the model-checker.

Here we show both theoretical and applicative contributions. On the
theoretical side we give a simple algorithm to decide this logic, and we
prove that the satisfiability problem is ExpTime-complete when the con-
stants of the quantifiers are represented in unary. On the applicative side
we propose symbolic algorithms to solve the model checking problem. One
of the main characteristics of these algorithms is that, though the com-
putation of “distinct” counterexamples has inherently high complexity
when the model is represented symbolically, we have designed them to
make the generation of multiple counterexamples as easy and quick as
possible. The symbolic algorithms have been implemented using BDD
data structures, and have been integrated into the well known NuSMV
model checker, that has been modified to accept specifications expressed
in graded-CTL. The test results we report are very comfortable in the
sense that both the running time and the size of the BDDs produced are
comparable to those obtained with specifications expressed in classical
CTL.

� Work partially supported by M.I.U.R. grant ex-60%:“Metodi formali per la verifica
automatica di sistemi” and by the National Research Project (PRIN’07) “Integrating
automated reasoning in model checking: towards push-button formal verification of
large-scale and infinite-state systems”.

K. Breitman and A. Cavalcanti(Eds.): ICFEM 2009, LNCS 5885, pp. 306–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Graded-CTL: Satisfiability and Symbolic Model Checking 307

1 Introduction

Recently a new logic strictly more expressive than CTL has been introduced
by the same authors in [FNP08, FNP10], called graded-CTL. It augments the
existential and universal quantifiers with graded modalities that allow to reason
about either at least or all but any number of futures. In literature, graded modal-
ities have been intensively studied in various logic frameworks. In classical logics
∃>k and ∀≤k are called counting quantifiers, see e.g. [GOR97, GMV99, PST00],
in modal logics they are called graded modalities, see e.g. [Fin72, Tob01], and in
description logics one speaks about number restriction of properties describing
systems, see e.g. [HB91]. A different extension of CTL (RCTL) has been also de-
fined in [EMSS92], where bounds are placed on the temporal modalities, instead
of on the path quantifiers, bounding thus the maximum number of permitted
transitions along a path.

Simple examples of graded-CTL are the formula E>kF(critic1 ∧ critic2),
which expresses that there exist more than k possibilities to violate the mu-
tual exclusion property to enter the critical section of a system, and the formula
E>kFgood which expresses the fact that the system has several ways to reach a
good state. Formulas of these types cannot be expressed in CTL and not even in
classical μ-calculus. Consider the two Kripke structures in the following figure,
they cannot be distinguished by any CTL formula, while on the contrary, only
the first is a model for the graded-CTL formula E>1Xp, which says that there
is more than one next state where p holds.

Another favorable point for studying this new logic is when we want to express
that exactly one path satisfies a path formula, say for example Gϕ, which means
that ϕ holds forever in the states along a path: we can use the graded-CTL
formula E>0Gϕ∧¬E>1Gϕ. This latter example also shows that there is a great
difference between a graded-CTL formula and the CTL formula obtained simply
by ignoring the constant grading the path quantifiers: not only the models of
the two formulas are different but even the satisfiability may change since, the
deletion of the constants from E>0Gp∧¬E>1Gp produces a CTL formula which
is not satisfiable.

Our contribution is on both a theoretical and an applicative side. For the
former we give a simple algorithm to decide the satisfiability of a graded-CTL
formula ϕ in time 2O(|ϕ|4), when the grading constants occurring in the quan-
tifiers of ϕ are expressed in unary. On the applicative side, we deal with the
model-checking framework for the graded-CTL logic. In [FNP10] it has been
shown that the graded-CTL model-checking problem can be solved in polynomial
time and independently from the constant values grading the path quantifiers
of the formula (and thus the representation of the constants does not affect the
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running time of the model checking algorithm). Here, we propose symbolic al-
gorithms for solving the model checking problem. As widely known, symbolic
model checking [BCM+90] is a technique that allows, by representing and ma-
nipulating sets of vertices, to manage models with very high number of states.
This have also been applied to the model checking of CTL [CE81] by revealing
a very high efficiency in practice, especially in hardware verification [McM93].

We have implemented our algorithms with Binary Decision Diagrams, BDDs
[Bry92], and have integrated them in the NuSMV model-checker [CCG+02] (and
actually are collaborating with the development team for the integration of
graded-CTL in the next official release of NuSMV). Besides being more expres-
sive than CTL, a motivation for the use of graded-CTL in the model checking
framework, is its close relation to the counterexamples generated by the model-
checker tools. In fact these tools generate one counterexample for each run and
they are used as a step in the Check/Analyze/Fix loop: Check the model against
a specification, Analyze the counterexample generated by the tool and re-design
the model after having Fixed the errors. The Check stage is often expensive, in
terms of time resources, so it would be desirable to minimize the number of runs
of the model-checkers. The complexity of the Analyze stage depends on the time
the designer needs to interpret the counterexamples, and this task can be facili-
tated by providing more meaningful counterexamples. With respect to this, we
think that graded-CTL can be much useful, in fact by using the graded modal-
ities we can get more counterexamples with a unique run of the model checker
and, hopefully, one does not have to undergo again through the time-consuming
three stage cycle, c.f. [CG07, CIW+01, DRS03].

Clearly, it is possible in principle, to modify a tool checker to let it gener-
ate multiple counterexamples without changing the logic. Anyway, this is not
likely to be done for essentially two reasons. First suppose that for example a
system designer desires two evidences to the CTL formula EFEGp. He cannot
choose the ”type” of the evidences unless he uses a graded-CTL formula, either
E>0FE>1Gp or E>1FE>0Gp, which allow to get different evidences according
to the needs (and not following a policy hard-coded once and for all into the
tool). Second, it is not a trivial task to symbolically implement an algorithm
that analyzes the model looking for distinct counterexamples (consider, for ex-
ample, the inherent difficulty in the symbolic implementation of a DFS); our
algorithms, instead, have been explicitly designed to make the computation of
distinct counterexamples as quick and easy as possible.

We have implemented the symbolic algorithms into the well known NuSMV
model checker, version 2.4.3, and have tested it on various examples. We re-
port some results obtained from examples of the official NuSMV web site. Other
tests and the package for graded-CTL can be found at http://gradedctl.dia.
unisa.it. The experimental results indicate that there is no substantial over-
head both in time and in size of BDDs needed to process graded-CTL formulas
with respect to the classical CTL ones.

Related Works. In [KSV02], complexity issues related to the satisfiability
problem for the μ-calculus when the universal and existential quantifiers are

http://gradedctl.dia.unisa.it
http://gradedctl.dia.unisa.it
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augmented with graded modalities, have been investigated. They have shown
that this problem is ExpTime-complete, retaining thus the same complexity as
in the case of classical μ-calculus, though strictly extending it. There, the values
of the constants grading the quantifiers are represented in binary.

In [BMM09] a logic with the same expressivity of our graded-CTL logic is
considered, though their interpretation of the graded quantifiers is different and
seems to be less natural than ours. Consider in fact the formula E>kGTrue: in
our logic it extends the CTL formula EGTrue (having the intuitive meaning
that at least k different paths stem); in their interpretation it is a contradiction,
since it has no models. Also they solve the satisfiability problem, anyway the
complexity of the translations between our and their logics prevents the two
results to be derived from each other. The main differences between these two
results is that theirs is in time 2O(|ϕ|5).

In the last years, symbolic computations have also been applied to other
kinds of problems. In [BGS06] the authors show a symbolic algorithm for the
computation of the maximum flow in a 0-1 network, while in [GPP07] graph
connectivity related problems are studied from a symbolic point of view. Recently
symbolic techniques have also been applied to the satisfiability problem for the
modal logic K [PSV05] and for CTL [Mar05].

The rest of the paper is organized as follows: in Section 2 we give the definitions
of graded-CTL. In Section 3 we solve the satisfiability problem. In Section 4
we give the symbolic algorithms for the graded-CTL model checking problem.
In Section 5 we describe the implementation of our algorithm into NuSMV and
present the experimental results of the tests. In Section 6 we give our conclusions
and outline some future research directions.

2 Graded-CTL Logic

In this section we recall the graded-CTL logic introduced in [FNP10]. The well-
known temporal logic CTL [CE82] is a branching-time logic in which temporal
operators express properties about a possible future and are preceded by a path
quantifier. With this logic one can express properties that have to be true either
immediately after now (X ), or each time from now (G), or from now until some-
thing happens (U), and it is possible to specify, through a path quantifier, that
each property must hold either in some possible futures (E) or in each possible
future (A). The graded-CTL logic extends CTL with graded quantifiers allowing
to express also that a temporal property must hold either in more than a given
number or in all but a given number of possible futures. The graded-CTL oper-
ators consist of the temporal operators U and X , the boolean connectives ∧ and
¬, and the graded path quantifier E>k (for at least k+1 distinct futures). Given
a set of atomic propositions AP , the syntax of the graded-CTL formulas is:

ϕ := p | ¬ψ1 | ψ1 ∧ ψ2 | E>kXψ1 | E>kGψ1 | E>kψ1Uψ2

where p ∈ AP , ψ1 and ψ2 are graded-CTL formulas and k is a non-negative
integer. The graded-CTL formulas, as in standard CTL, are also called state-
formulas and Xψ1, Gψ1 and ψ1Uψ2, are called, as usual, path-formulas. The
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semantics of graded-CTL is defined with respect to a Kripke Structure, by means
of a satisfiability relation |=. A Kripke structure over a set of atomic propositions
AP is a tuple K = 〈S, sin, R, L〉, where S is a finite set of states, sin ∈ S is the
initial state, R ⊆ S × S is a transition relation, with the property that for each
state s there is a successor t such that (s, t) ∈ R, and L : S → 2AP is a state
labeling function. In the rest of the paper, with K we always denote the Kripke
structure 〈S, sin, R, L〉.

The relation |= is defined as follows:

– (K, s) |= p iff p ∈ L(s);
– (K, s) |= ψ1 ∧ ψ2 iff (K, s) |= ψ1 and (K, s) |= ψ2;
– (K, s) |= ¬ψ1 iff ¬((K, s) |= ψ1)
– (K, s) |= E>kXψ1 iff there exist k+1 different successors s0, . . . , sk of s such

that (K, si) |= ψ1 for all 0 ≤ i ≤ k;
To define the semantics for G and U operators, let us first introduce the notion
of distinct paths which plays an important role. The length |π| of a path π in
K is the number of its states, and π[i] denotes the i-th state in π, 0 ≤ i < |π|.
Two paths π1 and π2 are distinct if there exists an index 0 ≤ i < min{|π1|, |π2|}
such that π1[i] �= π2[i]. Observe that from this definition if a path is the prefix
of another path, then they are not distinct.

– (K, s) |= E>kGψ1 iff there exist k + 1 pairwise distinct infinite paths πj ,
0 ≤ j ≤ k, starting from s and such that (K, πj [h]) |= ψ1, for all h ≥ 0.
These paths πj are said to satisfy the path-formula Gψ1.

– (K, s) |= E>kψ1Uψ2 iff there exist k + 1 pairwise distinct finite paths πj of
length ij + 1, for 0 ≤ j ≤ k, and starting from s such that:

1. (K, πj [ij ]) |= ψ2, and
2. for every 0 ≤ h < ij , (K, πj [h]) |= ψ1;

These paths πj are said to satisfy the path-formula ψ1Uψ2.

We say that a state s in K satisfies a state-formula ϕ if (K, s) |= ϕ and K models
(or also is a model of) ϕ, if (K, s0) |= ϕ

Observe that we have expressed the syntax of graded-CTL with one of the
possible minimal sets of operators. Other temporal operators can be easily de-
rived from those. For example, the temporal operator F (eventually) can be
expressed by: E>kFψ1 ⇔ E>kTrueUψ1. Moreover, the path quantifier E=k

can be expressed, as shown in the introduction, since E=kψ is equivalent to
E>k−1ψ∧¬E>kψ, and also the graded extension of the universal quantifier, A≤k,
can be defined, with the meaning that all the paths starting from a node s, but at
most k pairwise distinct paths, satisfy a given path-formula. The quantifier A≤k

is the dual operator of E>k and can obviously be re-written in terms of ¬E>k.
The formulas A≤kXψ1 and A≤kGψ1 are equivalent to respectively ¬E>kX¬ψ1

and ¬E>kF¬ψ1, while the formula A≤kψ1Uψ2 with k > 0 deserves more atten-
tion. In fact, we have that A≤kψ1Uψ2 is equivalent to ¬E>k¬(ψ1Uψ2), but this
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formula is not a graded-CTL formula because of the occurrence of the innermost
negation. This latter can be expressed in graded-CTL in the following way:

A≤kψ1Uψ2 ⇐⇒ ¬E>kG(ψ1 ∧ ¬ψ2) ∧ ¬E>k(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2)∧∧k−1
i=0 (¬E>k−1−iG(ψ1 ∧ ¬ψ2) ∨ ¬E>i(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2))

(1)

Equivalence (1) holds because if a path does not satisfy ψ1Uψ2 then it satisfies
either θ1 = G(ψ1 ∧ ¬ψ2) or θ2 = (ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) and, moreover, the
paths satisfying θ1 are all distinct from the paths satisfying θ2.

Let us now recall the definitions of the graded-CTL satisfiability and model-
checking problems. The graded-CTL SAT is the problem of verifying whether a
Kripke structure exists which models a given graded-CTL formula. The graded-
CTL model-checking, given a Kripke structure K and a graded-CTL formula
ϕ, is the problem of verifying whether K models ϕ.

In spite of the augmented expressiveness, the complexity of the graded-CTL
model-checking problem remains the same as that of CTL, since this problem is
solved in polynomial time and independently from the constant values grading
the path quantifiers of the formula.

Let |ϕ| be the number of the temporal and the boolean operators occurring
in a graded-CTL formula ϕ.

Theorem 1. [FNP10] The graded-CTL model-checking problem for a Kripke
structure K and a graded-CTL formula ϕ can be solved in time O(|R| · |ϕ|).

Distinct paths. Since graded-CTL requires to count the paths satisfying a for-
mula, we have introduced the notion of distinct paths. Now we briefly discuss
this definition. For the globally operator we had no choice since we have to dis-
tinguish infinite paths. On the contrary the other temporal operators require a
deeper reasoning. The most reasonable choice in this case is to count distinct
finite evidences of a formula. In fact, the different choice to count infinite dis-
tinct paths (as done for the globally operator) may cause loss of information,
as illustrated by the fact that the validity of the formula E>kF safe no longer
ensures that a system has more ways to reach safe states. In fact also paths that
diverge after the last safe state would be counted as distinct.

Another possible choice is to consider as distinct two evidences of ψ1Uψ2 also
in the case that one is the prefix of the other (this logic, in a certain sense,
allows to count the number of states satisfying a formula in a Kripke structure).
However, it can be proved quite immediately, that this choice leads to a logic
that is no more expressive than ours.

3 The SAT Problem

In this section we show that SAT problem for graded-CTL is ExpTime-complete
when the grading constants in the path quantifiers are expressed in unary. The
membership proof is based on the reduction of the SAT problem to the emptiness
problem for Büchi Automata on Infinite Trees. Since an infinite tree can be seen
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as a special Kripke structure with an infinite set of states, we can easily extend
the semantics of the graded-CTL logic to infinite trees and we say that an infinite
tree T is a model (i.e. satisfies) a graded-CTL formula ϕ iff (T, root(T )) |= ϕ.

Given a graded-CTL formula ϕ, we consider the set Eϕ of the subformulas
E>kθ of ϕ occurring in positive form, that is we do not include in Eϕ the
subformulas ¬E>kθ. Our algorithm to solve the graded-CTL SAT problem is
based on the fact that graded-CTL, as stated in the following lemma, obeys to
a Tree Model Property.

First, we define for a graded-CTL formula ϕ the set ecl(ϕ) (that we call
extended closure of ϕ) as the minimal set of graded-CTL formulas such that

– True is in ecl(ϕ) and ϕ is in ecl(ϕ);
– if ψ1 ∧ ψ2 is in ecl(ϕ), then both ψ1 and ψ2 are in ecl(ϕ)
– if E>kXψ1 (k ≥ 0) is in ecl(ϕ), then ψ1 is in ecl(ϕ);
– if E>0Gψ1 is in ecl(ϕ), then ψ1 is in ecl(ϕ);
– if E>0ψ1Uψ2 is in ecl(ϕ), then both ψ1 and ψ2 are in ecl(ϕ);
– if E>kθ is in ecl(ϕ) with k > 0 and either θ = Gψ1 or θ = ψ1Uψ2, then E>iθ

is in ecl(ϕ) for all 0 ≤ i ≤ k − 1;
– if ψ is in ecl(ϕ) then ¬ψ is in ecl(ϕ);

To get ecl finite, we assume that ¬¬ϕ is replaced by ϕ.

Lemma 1. If a graded-CTL formula ϕ is satisfiable, then it is satisfiable on a
2AP -labeled infinite tree with branching degree bounded by b = k̂+ l+ 1, where k̂
is the sum of the grading constants occurring in the subformulas in Eϕ and l is
the number of these subformulas.

Proof. Let K be a model of ϕ and let us consider its unwinding T ; obviously
T satisfies ϕ. Suppose that the branching degree of T is greater than b; we will
show how to modify T to obtain a tree with branching degree at most b and that
still satisfies ϕ. Let x ∈ T be a node having n > b children. Let us denote by
F (x) a minimal subset ecl(ϕ) containing the graded-CTL formulas that have to
be satisfied in x in order to have that T is a model of ϕ. If F (x) contains only
boolean combinations of atomic proposition or formulas of the type ¬E>kθ, we
choose one child of x and prune all subtrees rooted in the remaining children of
x. Each other formula in F (x) not containing path quantifiers still holds true,
because it only depends on the labeling of the node x, and each other formula
in F (x) of the kind ¬E>kθ is still satisfied in x because we have only deleted
paths starting from x.

Suppose now that F (x) contains also the formulas E>k1θ1, . . . , E
>ktθt. From

the minimality of F (x), it follows that θi �= θj , for i �= j, and thus k1+. . .+kt ≤ k̂
and t ≤ l. Consider, for each 1 ≤ i ≤ t, a minimal set Ci of children of x that, all
together, allow x to satisfy E>kiθi. More precisely, called my = max{h|(K, y) |=
∃>h−1θi}, for a child y of x, ki <

∑
y∈Ci

my, and, for any proper subset C′
i of Ci,

ki ≥
∑

y∈C′
i
my. From this definition it follows that my �= 0 for every y ∈ Ci and

thus |Ci| ≤ ki+1 for all 1 ≤ i ≤ t. Now we prune from T all the subtrees rooted in
children of x that are not in C1∪. . .∪Ct. Since |C1∪. . .∪Ct| ≤ k1+. . .+kt+t ≤ b,
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now the node x has at most b children. Reasoning as above, formulas in F (x) that
either do not contain path quantifiers or are of kind ¬E>kθ are still satisfied in
x. Moreover, the formula E>kiθi is still satisfied in x because of the x’s children
that are in Ci.

By iterating this procedure on each node with degree greater than b, we
obtain that there exists an infinite tree with branching degree at most b whose
root satisfies ϕ, and this completes the proof. ��
Now we show how to solve the SAT problem for a graded-CTL formula in time
exponential in the size of the formula. Since |ϕ| is the number of the temporal
and the boolean operators occurring in a graded-CTL formula ϕ, we analyze the
complexity of the problem with respect to |ϕ|u = |ϕ|+ k̂

Theorem 2. The satisfiability of a graded-CTL formula ϕ can be decided in
time 2O(|ϕ|4u) if the constants appearing in the graded operators of ϕ are expressed
in unary.

Proof. To prove the theorem, we reduce the satisfiability problem for graded-
CTL to the nonemptiness problem of Nondeterministic Büchi Tree Automata
(NBTA). In particular, we show that for each graded-CTL formula there is an
NBTA Aϕ = 〈2AP , Q,Q0, δ,F〉 that accepts all and only the 2AP -labeled infinite
trees satisfying ϕ, whose branching degree is bounded by b. It is easy to show
that L(Aϕ) �= ∅ iff ϕ is satisfiable. From Lemma 1 we have that if L(Aϕ) = ∅
then ϕ is not satisfiable. On the other side, if L(Aϕ) �= ∅, since an NBTA accepts
only regular trees, an infinite regular tree exists satisfying ϕ; and thus a model
for ϕ exists, since, as it is well known, any regular infinite tree is the unwinding
of a Kripke structure.

Let us now describe the automaton Aϕ. The idea is that each state of the
automaton is a set of graded-CTL formulas that have to be satisfied in a node x
and the automaton decides, based on the current state and on the label of x, the
formulas that have to be satisfied in each child of x. More precisely, the set of
the states of the automaton Aϕ is the subset Q ⊆ 2ecl(ϕ) such that for all q ∈ Q
the following consistency rules hold:

– if ψ1 ∧ ψ2 ∈ q then ψ1 ∈ q and ψ2 ∈ q,
– if ¬(ψ1 ∧ ψ2) ∈ q then either ¬ψ1 ∈ q or ¬ψ2 ∈ q,
– if E>kGψ1 ∈ q (k ≥ 0) then ψ1 ∈ q,
– if E>0ψ1Uψ2 ∈ q then either ψ1 ∈ q or ψ2 ∈ q,
– if E>kψ1Uψ2 ∈ q (k > 0) then ψ1 ∈ q,
– if ¬E>0ψ1Uψ2 ∈ q then ¬ψ2 ∈ q,
– for all ψ ∈ ecl(ϕ), ψ ∈ q iff ¬ψ �∈ q.

The set of initial states is the subset Q0 ⊆ Q containing all the states q such
that ϕ ∈ q. A state q ∈ Q is final iff it satisfies the following properties: (i)
False �∈ q, (ii) q doesn’t contain any formula of kind E>kθ with k > 0 and
either θ = Gψ1 or θ = ψ1Uψ2, (iii) if q contains a formula of kind E>0ψ1Uψ2

then it also contains ψ2 and (iv) if q contains a formula of kind ¬E>0Gψ1 then
it also contains ¬ψ1.



314 A. Ferrante, M. Napoli, and M. Parente

Let us now describe the transition function of Aϕ. Let us suppose that the
automaton is in a state q ∈ Q and is reading the label σ of a node x with deg(x)
children. With its transition function, the automaton assigns to each child x a
state including a set of formulas chosen as follows, for each ψ ∈ q.
– if ψ = True, then True is added to the set of formulas of each child;

analogously for ψ = False;
– if ψ = p (p ∈ AP ) and p ∈ σ (resp. p �∈ σ), then True (resp. False)is added

to the set of formulas of each child; analogously for ψ = ¬p;
– if ψ = E>kXψ1 (k ≥ 0), then k + 1 children are chosen and ψ1 is added to

the sets of formulas of these children;
– if ψ = ¬E>kXψ1 (k ≥ 0), then at most k children are chosen and ψ1 is

added to the sets of formulas of these children and ¬ψ1 is added to the sets
of formulas of the remaining children;

– if ψ = E>kGψ1 (k ≥ 0), then t children x1, . . . , xt and t positive integers
k1 . . . , kt are chosen, such that k1 + . . . + kt + t = k + 1, and E>kjGψ1is
added to the set of formulas of xj , for all 1 ≤ j ≤ t;

– if ψ = E>0ψ1Uψ2 and ¬ψ2 ∈ q, then a child is chosen and E>0ψ1Uψ2 is
added to the set of formulas of that child;

– if ψ = E>kψ1Uψ2 (k > 0), then t children x1, . . . , xt and t positive integers
k1, . . . , kt are chosen, such that k1 + . . .+ kt + t = k+ 1, and E>kjψ1Uψ2 is
added to the set of formulas xj , for all 1 ≤ j ≤ t;

– if ψ = ¬E>kθ (with either θ = Gψ1 or θ = ψ1Uψ2 and k ≥ 0) and ψ1 ∈
q, then deg(x) non negative integers k1, . . . , kdeg(x) are chosen, such that
k1 + . . .+kdeg(x) ≤ k, and ¬E>kjθ is added to the set of formulas of the j-th
child, for all 1 ≤ j ≤ deg(x);

– in the remaining cases, True is added to the set of formulas of each child.

Let us evaluate the size of the automaton and the running time of the algorithm.
It is easy to see that |ecl(ϕ)| = O(|ϕ|u), therefore the automaton has 2O(|ϕ|u)

states. In the worst case, the function δ contains all the tuples of states with
length b = O(|ϕ|u), therefore the transition function has total size |δ| ≤ |Q|b+1 =
2O(|ϕ|2u) and the size of the automaton is |Aϕ| = 2O(|ϕ|2u). Since the nonemptiness
problem for an NBTA can be solved in time quadratic in the length of the string
representing the automaton [VW86], we obtain that our algorithm works in time
O(|Aϕ|2) = 2O(|ϕ|4u). ��
From the previous theorem and the ExpTime-completeness of the SAT problem
for CTL, the following corollary holds.

Corollary 1. The SAT problem for graded-CTL is ExpTime-complete.

4 Symbolic Model Checking Algorithms

In this section we give symbolic algorithms to solve the graded-CTL model check-
ing problem. Let us recall that a symbolic algorithm manipulates sets and uses
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basic set operations, such as union, intersection, and complementation. In sym-
bolic model-checking, states and transitions are represented as boolean functions
on the set of the atomic propositions, that in turn, can be represented as the
set of variable assignments. In this framework, the fundamental symbolic oper-
ation is the computation of the pre-image of a set of destination states, (i.e.,
the states having a successor in the given set). This is performed by using the
classical existential quantification operation on boolean functions (correspond-
ing to a projection on sets). In graded-CTL model-checking, the counterpart
of the pre-image is the computation of the number of successors that a state has
in the destination set, called image-size. The image-size function is computed
with the existential quantification on multisets (corresponding to a projection on
multiset). A Multiset is used to distinguish multiple occurrences of elements and
is represented by a pair (M,m) whereM is a set of elements andm is a multiplic-
ity function that returns the number of occurrences of the element in input. The
projection on multiset is performed with the

⊎
operator which sums the multi-

plicity functions of two multisets. Moreover, our algorithms use also the function
multisetT oSet((M,m), i) that returns the set of the elements of M having mul-
tiplicity greater than i, that is multisetT oSet((M,m), i) = {s ∈ M |m(s) > i}.
Some details on the implementation of the above functions can be found in the
next section.

It is known that symbolic model-checking algorithms are in the practical cases
very efficient, and this depends on the practical efficiency of the data structures
used to represent and manipulate sets and multisets. Therefore, as also suggested
in [BGS06], we will measure the asymptotic complexity of our algorithms in
terms of the number of pre-image and image-size computations (we will call pre
and imgSize the functions that compute respectively the pre-image and the
image-size).

We denote, for a graded-CTL formula ϕ, with [ϕ] the set of states of the
Kripke structure where ϕ holds.

Let us now show how to model check formulas of kind E>kθ (k ≥ 0). If
θ = Xψ1 and [ψ1] has already been computed, then ϕ can be easily checked
by a function existNext(K, k, [ψ1]) that first computes the image-size (S,m)
of [ψ1] and then returns the set of states s ∈ S such that m(s) > k (i.e.,
multisetT oSet((S,m), k)).

Therefore we have the following lemma.

Lemma 2. Given a formula ϕ = E>kXψ1 (k ≥ 0), there is a symbolic algo-
rithm that takes as input [ψ1] and solves the model checking problem for ϕ by
using O(1) imgSize computations.

Now let us show how to solve the model checking problem for a formula ϕ =
E>kθ with either θ = ψ1Uψ2 or θ = Gψ1 (k ≥ 0).

Lemma 3. Given a formula ϕ = E>kψ1Uψ2 (k ≥ 0), there is a symbolic algo-
rithm that takes in input [ψ1] and [ψ2] and solves the model checking problem
for ϕ with O(k · |S|) pre and imgSize computations.
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Proof. We can solve the model checking problem for ϕ by using the following
function existUntil.

Function existUntil(K, k, [ψ1], [ψ2])

1. S0 ← [ψ2]; PRED← pre(K, S0) ∩ [ψ1];
2. while PRED �⊆ S0 do S0 ← S0 ∪ PRED; PRED← pre(K, S0) ∩ [ψ1];
3. [E>0ψ1Uψ2]← S0; Let (S, sumSucc) be such that sumSucc(s) = 0 for all s ∈ S;
4. for i← 1 to k do
5. (S, succ)← imgSize([E>i−1ψ1Uψ2]);
6. (S, sumSucc)← (S, sumSucc)

⊎
(S, succ);

7. Si ← multisetToSet((S, sumSucc), i) ∩ [ψ1];
8. PRED← pre(K, Si) ∩ [ψ1];
9. while PRED �⊆ Si do Si ← Si ∪ PRED; PRED← pre(K, Si) ∩ [ψ1];
10. [E>iψ1Uψ2]← Si;
11. end

12. return [E>kψ1Uψ2];

For k = 0, this function essentially resembles the classical CTL symbolic model
checking algorithm [BCM+90]. For k > 0 we use, for a state s ∈ S and 1 ≤ i ≤ k,
the functions succ and sumSucc, defined as follows:

succi−1
s = |{s′ ∈ [E>i−1ψ1Uψ2] s.t. (s, s′) ∈ R}| and

sumSuccis =
∑i−1

j=0 succ
j
s.

The function succi−1
s is the number of successors of s satisfying E>i−1ψ1Uψ2.

Let us observe that if t is a successor of s from which i paths start, each satisfying
ψ1Uψ2, then t satisfies E>jψ1Uψ2, for 0 ≤ j < i, and thus t contributes for i
times in the computation of sumSuccks . Then (K, s) |= ψ iff s ∈ [ψ1] and one of
these two conditions holds:

1. sumSuccks > k, that is from the successors of s, k + 1 paths stem, each
satisfying ψ1Uψ2;

2. there is one successor of s satisfying E>kψ1Uψ2.

Based on the above observations, the function existUntil satisfies the following
invariants, at the end of the i-th iteration:

– the multiset (S, succ) contains the values succi−1
s for all s ∈ S,

– the multiset (S, sumSucc) contains the values sumSuccis for all s ∈ S and
– Si = [E>iψ1Uψ2].

The proof can be easily obtained by induction on i ( it is useful to recall that,
given (M,m1) and (M,m2), (M,m1)

⊎
(M,m2) = (M,m) with m(s) = m1(s) +

m2(s) for all s ∈ M). In particular, to compute Si, the function computes first
the set {s ∈ S s.t. sumSuccis > i} (line 6), that is the set of the states satisfying
the condition 1 above, and then it applies a least fixpoint algorithm starting from
this set (lines 7-8) to compute the set of the states having a successor satisfying
E>iψ1Uψ2, according to the condition 2. ��
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E>3pUq

i 1 2 3

Si−1 A, B, C, D,
E, F, G, H

A, B, C, E, F A, B

(S, succ)
(A, 1), (B, 3), (C, 1),
(D, 1), (E, 1), (F, 2),

(G, 1), (H, 1)

(A, 1), (B, 2), (C, 1),
(D, 0), (E, 1), (F, 0),

(G, 0), (H, 0)

(A, 1), (B, 0), (C, 0),
(D, 0), (E, 0), (F, 0),

(G, 0), (H, 0)

(S, sumSucc)
(A, 1), (B, 3), (C, 1),
(D, 1), (E, 1), (F, 2),

(G, 1), (H, 1)

(A, 2), (B, 5), (C, 2),
(D, 1), (E, 2), (F, 2),

(G, 1), (H, 1)

(A, 3), (B, 5), (C, 2),
(D, 1), (E, 2), (F, 2),

(G, 1), (H, 1)

Si (line 6) B, F B B

Si (line 9) A, B, C, E, F A, B A, B

(a) (b)

Fig. 1. An execution of the function existUntil

In Figure 1(b) an execution of the function existUntil on the Kripke structure
of figure 1(a) and the formula E>3pUq is reported.

Lemma 4. Given a formula ϕ = E>kGψ1 (k ≥ 0), there is a symbolic algorithm
that takes in input [ψ1] and solves the model checking problem for ϕ with O(k·|S|)
pre and imgSize computations.

Proof. By using a similar reasoning as done in Lemma 3, we can solve the model
checking for ϕ by using the following function existGlobally, that is quite similar
to the function existUntil.

Function existGlobally(K, k, [ψ1])

1. S0 ← [ψ1]; PRED← pre(K, S0) ∩ [ψ1];
2. while PRED �= S0 do S0 ← PRED; PRED← pre(K, S0) ∩ [ψ1];
3. [E>0Gψ1]← S0; Let (S, sumSucc) be such that sumSucc(s) = 0 for all s ∈ S;
4. for i← 1 to k do
5. (S, succ)← imgSize([E>i−1Gψ1]);
5. (S, sumSucc)← (S, sumSucc)

⊎
(S, succ);

6. Si ← multisetToSet((S, sumSucc), i) ∩ [ψ1];
7. PRED← pre(K, Si) ∩ [ψ1];
8. while PRED �⊆ Si do Si ← Si ∪ PRED; PRED← pre(K, Si) ∩ [ψ1];
9. [E>iGψ1]← Si;
10. end
11. return [E>kGψ1];

They essentially differ in the calculus of the base [E>0θ], for which they resemble
the classical CTL symbolic model checking algorithm [BCM+90]. ��
Now we are ready to show our symbolic algorithm to solve the graded-CTL
model checking problem.

Theorem 3. The graded-CTL model checking problem can be solved with a sym-
bolic algorithm that performs O(k̃·|S|·|ϕ|) calls to the functions pre and imgSize,
where k̃ is the maximum grading constant appearing in ϕ.

Proof. Algorithm 1 solves the graded-CTL model-checking. It uses the functions
existNext, existUntil and existGlobally of Lemmas 2, 3 and 4.
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Algorithm 1. gradedCTL(K,ϕ)

1. Input: A Kripke structure and a graded-CTL formula ϕ.
2. Output: The set of states where ϕ holds.

3. If ϕ = p (p ∈ AP ) then return {s ∈ S s.t. p ∈ L(s)};
4. If ϕ = ¬ψ1 then return S \GradedCTL(K, ψ1);
5. If ϕ = ψ1 ∧ ψ2 then return GradedCTL(K, ψ1) ∩GradedCTL(K, ψ2);

6. If ϕ = E>kXψ1 (k ≥ 0) then return existNext(K, k,GradedCTL(K, ψ1));
7. If ϕ = E>kψ1Uψ2 (k ≥ 0) then return
existUntil(K, k,GradedCTL(K, ψ1), GradedCTL(K, ψ2));

8. If ϕ = E>kGψ1 (k ≥ 0) then return existGlobally(K, k,GradedCTL(K, ψ1));

From previous Lemmas, the number of calls to the functions pre and imgSize
is

T (K, ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(1) if ϕ = p
O(1) + T (K, ψ1) if ϕ = ¬ψ1

O(1) + T (K, ψ1) + T (K, ψ2) if ϕ = ψ1 ∧ ψ2

O(1) + T (K, ψ1) if ϕ = E>kXψ1 with k ≥ 0
O(k · |S|) + T (K, ψ1) + T (K, ψ2) if ϕ = E>kψ1Uψ2 with k ≥ 0
O(k · |S|) + T (K, ψ1) if ϕ = E>kGψ1 with k ≥ 0

from which we have that T (K, ϕ) = O(k̃ · |S| · |ϕ|). ��
Let us remark that in the syntax of graded-CTL logic we have not included the
operator A≤k. In fact, as stated in section 2, this operator can be expressed
in terms of ¬E>k. Anyway, doing so there is an efficiency problem for the U
operator that causes an efficiency loss for the model checking algorithm. In fact,
from equivalence (1) one should evaluate k + 1 formulas of kind E>kGθ1 and
k + 1 formulas of kind E>kθ1Uθ2. Anyway, we show here that it is possible to
avoid these extra evaluations by using a smarter algorithm.

From the equivalence (1), indeed, it is easy to see that, given a state s ∈ S, if
max1(s) and max2(s) denote the maximum number of distinct paths, starting
from s, satisfying G(ψ1 ∧ ¬ψ2) and (ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) respectively, then
(K, s) |= E>k¬(ψ1Uψ2) iff max1(s) + max2(s) > k. In fact, there do not exist
paths satisfying both the two path-formulas, thus the two sets are disjoint and
max1(s) +max2(s) is the maximum number of distinct paths violating ψ1Uψ2.

Function forallUntil(K, k, [ψ1], [ψ2])

1. [ψ1 ∧ ¬ψ2]← [ψ1] ∩ (S \ [ψ2]); [¬ψ1 ∧ ¬ψ2]← (S \ [ψ1]) ∩ (S \ [ψ2]);
2. (S,max1)← maxPathsGlobally(K, [ψ1 ∧ ¬ψ2], k + 1);
3. (S,max2)← maxPathsUntil(K, [ψ1 ∧ ¬ψ2], [¬ψ1 ∧ ¬ψ2], k + 1);
4. return multisetToSet((S,max1)

⊎
(S,max2), k);

The function forallUntil uses the functions maxPathsGlobally(K, [θ1], i) and
maxPathsUntil(K, [θ1], [θ2], i) to compute max1(s) and max2(s), respectively,
for all s ∈ S. These two functions returns, for each state s ∈ S, the maximum
number (bounded by i) of distinct paths starting from s and satisfying Gθ1 and
θ1Uθ2, respectively. The function maxPathUntil can be implemented with a
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simple modification of the function existUntil: execute the for loop until k+ 1,
instead of k, and return the multiset (S, sumSucc). Analogously, the function
maxPathGlobally can be implemented as a simple modification of the function
existGlobally. In this way, if [ψ1] and [ψ2] are known, also the model checking
of a formula A≤kψ1Uψ2 requires time O(k · |S|) and we have the following
theorem.

Theorem 4. The model checking problem for a graded-CTL formula ϕ possibly
including forall subformulas can be solved with a symbolic algorithm that per-
forms O(k̃ · |S| · |ϕ|) calls to the functions pre and imgSize, where k̃ is the
maximum grading constant appearing in ϕ.

5 Implementation and Experimental Results

In this section we show the experimental results obtained by implementing
our symbolic algorithms that we have integrated into the model checker tool
NuSMV [CCG+02]. NuSMV is based on the CUDD library [Som05], for the
treatment of BDDs, that allows also the use of Algebraic Decision Diagrams,
ADDs in short [BFG+97]. These are a generalization of BDDs in which the
leaves can be integers and are used to represent multisets. By using ADDs to
manipulate multisets one gets several advantages, like natural transformations
between sets and multisets (that are frequently used in our algorithms) and very
efficient performances in practice. As said in the previous section, the basic op-
erations we use are

⊎
, imgSize and mutlisetT oSet. Their implementation quite

naturally come from simple applications on ADDs of known BDD operations.
More precisely, the

⊎
operator is obtained by applying to ADDs the classical

apply: when the computation reaches two leaves x and y of an ADD, the re-
sult is a leaf with the sum of x and y. In a similar way, the implementation of
the imgSize function is an application of the classical pre function, with the ∪
operator substituted by the

⊎
operator. Finally, the multisetT oSet function is

implemented by moving into a 1-node each leaf with value greater than k and
into a 0-node the remaining leaves and then by compacting the resulting BDD.
The enrichment of NuSMV with the graded-CTL model-checking capability, has
implied the modification of the internal parser to allow the use of the syntax for
graded-CTL specifications. Let us recall that NuSMV implements direct CTL
model-checking procedures only for the operators EX , EG and EU and derives
from these the procedures for all the other operators (since all the transfor-
mations are linear in the size of the formula). In our setting instead, since the
transformation of formulas A≤kU in terms of E>kG and E>kU is inefficient (the
size of the resulting formula is 2(k + 1) times the size of the original formula),
we directly implement all the procedures given in section 4.

We have also implemented the generation of the counterexamples, that dif-
ferently from what happens in CTL, returns trees (constituted by evidences of
the negation of the formula) instead of paths. As said into section 1, the im-
plementation of an algorithm for the generation of k + 1 distinct evidences of
a non trivial path-formula is not easy. More precisely, given a state s, while it
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is easy to implement an algorithm that returns k + 1 distinct evidences of the
path-formula Xψ1 (simply compute the forward-image of s, intersect it with
[ψ1] and pick k+1 states from the resulting set), for Gψ1 and ψ1Uψ2 we have to
implement a more complex algorithm. We explain here how to use some partial
results of our symbolic algorithms (namely, the sets [E>iθ], 0 ≤ i ≤ k, with
θ = Gψ1 or θ = ψ1Uψ2) to quickly compute a tree of evidences.

When one has to compute a tree of evidences, it is necessary to decide whether
it is better to compute a “wide” tree or a “tall” tree, in the sense that one
should decide whether, for the case under examination, it is more significative to
“distinguish” the evidences as soon as possible or as late as possible. Consider
for example the following model and let us look for a counterexample of the
formula ¬E>3Gp.

In this case a tall evidence tree will be constituted by all paths which differ only
for the number of times that they traverse the self-loop on the state 2, while a
large tree includes other more significative evidences.

The technique we have implemented in our tool can be used to find both kinds
of tree. The default is to return wide trees (which from our tests seems to be
better). Once we have computed the sets [E>iθ], 0 ≤ i ≤ k, by using the func-
tions existUntil and existGlobally, it is possible to compute a wide evidence
tree by executing the following procedure with s = sin.

Procedure evidences(K, k, s, θ)
1. if k = 0 then
2. compute an evidence for θ from s as done in NuSMV;
3. else;
4. count← 0; i← 0;
5. while count <= k do
6. if i < k then
7. SUCC(s, i)← forwardImg(s)∩ ([E>iθ] \ [E>i+1θ]); k′ ← i
8. else

9. SUCC(s, i)← forwardImg(s)∩ [E>iθ]; k′ ←
⌈

(k−count)
|SUCC(s,i)|

⌉

10. end
11. forall t ∈ SUCC(s, i) do
12. add t to as child of s; evidences(K, k′, t, θ); count← count + k′

13. end
14. i← i+ 1;
15. end
16. end
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The procedure evidences determines k + 1 evidences starting from a state s in
the following way: for each 0 ≤ i < k it computes the set of successors of s
that satisfy E>iθ and do not satisfy E>i+1θ (line 7)1 and from each of these
successors it recursively computes a set of i+ 1 distinct evidences. The variable
count counts the number of evidences that have already been computed. If they
are enough (that is, count > k) then the procedure ends; otherwise it repeats
the computation for i + 1. The load-balancing applied to the successors of a
node when i = k (lines 9) by giving k′ ←

⌈
(k−count)
|SUCC(s,i)|

⌉
is used to avoid to enter

in a loop of states all satisfying E>kθ. Note that, the procedure generates the
evidences by trying to differentiate them immediately on the successors of each
state, thus generating a wide evidence tree.

Our experiments have been executed on a workstation equipped with a CPU
Intel Core 2 duo 2.33GHz, with 4GB of RAM and Linux 2.6 operating system.
The tool software, other tests and other details (that due to lack of space we have
not included in the paper) can be found at http://gradedctl.dia.unisa.it.

As said into the introduction, our motivation to introduce this new graded
logic and use it to model check, is mainly to reduce the debugging times: thus
to measure the performance of our algorithm/approach one should take into
consideration also the potential savings obtained in avoiding to go through the
cycle Check/Analyze/Fix again. We report now some results measured on CPU
time and BDD size on various examples. The examples to test our algorithm have
been chosen from the official site of NuSMV. As said before there is no exact
method to compare the results of our approach with respect to the classical one.
We have chosen to proceed as follows: for each example, we have considered a
graded-CTL specification ϕ and have measured the CPU time and the BDD size
to model-check it by varying the values of the constants grading the quantifiers
in ϕ. The first row of each example is the result of running NuSMV on the

Table 1.

k
syncarb5 p-queue dme1.16

E>kX(e2.T oken) E>k[!e2.Token
U e2.T oken]

E>kG(out 1[1] = 0) A≤kF(out 1[1] = 0) E>kXe 1.req

Time �BDD Time �BDD Time �BDD Time �BDD Time �BDD
− 0, 000 1248 0, 000 1255 0, 024 33717 0, 020 33717 1, 320 244734
0 0, 000 1248 0, 000 1255 0, 024 33866 0, 020 33866 1, 320 244734
1 0, 000 1600 0, 000 1660 0, 056 82361 0, 020 41377 1, 460 320986
2 0, 000 1602 0, 000 1694 0, 060 92013 0, 020 41377 1, 664 416145
3 0, 000 1603 0, 000 1695 0, 060 92016 0, 024 41377 1, 740 443526
5 0, 000 1607 0, 000 1702 0, 060 101671 0, 024 41377 2, 064 572134
8 0, 000 1613 0, 000 1714 0, 064 102708 0, 024 41378 2, 736 783876
10 0, 000 1614 0, 000 1716 0, 064 102710 0, 024 41380 2, 860 830999
15 0, 000 1614 0, 000 1721 0, 068 102715 0, 024 41385 3, 304 949405
20 0, 000 1623 0, 000 1738 0, 072 104081 0, 028 41390 4, 248 1168181
50 0, 000 1614 0, 000 1798 0, 104 107395 0, 028 41420 9, 689 1732683

1 The forwardImg, giving the set of successors, can be computed analogously to the
computation of the pre− image.

http://gradedctl.dia.unisa.it
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given specification with (classical) non-graded quantifiers. The second row is the
result of running our tool on the given specification with all the grading values to
zero: this to underline that there is no overhead due to the grading, on formulas
semantically equivalent. All the remaining rows are the results obtained by using
other values of the grading quantifiers, to see how the complexity increases,
related to those values.

The Table 1 reports the results for formulas with one graded quantifier. In two
cases (dme1.16 and p-queue with specification E>kG(out 1[1] = 0)) one can ob-
serve a small increasing in the CPU time, with respect to the time needed for the
corresponding CTL formula. In the remaining examples, the CPU time remains
almost the same (most are approximatively equal to 0) for all the specifications
and for all the values of the constant k. Moreover, also the BDD size increases

Table 2.

k1 k2

robot syncarb5
k1 k2 k3

abp8

A≤k1G
(pT1.start →

A≤k2G
!pT1.finish)

A≤k1XA≤k2F
(e1.ack out∧

e1.P ersistent)

A≤k1G(A≤k2F
(sender.state =
get) ∧ A≤k3F

(receiver.state =
deliver))

E>k1G(E>k2F
(sender.state =
get) ∧ E>k3F

(receiver.state =
deliver))

Time �BDD Time �BDD Time �BDD Time �BDD
− − 0, 072 59240 0, 000 1321 − − − 3, 804 1743784 3, 052 1616154
0 0 0, 072 59449 0, 000 1321 0 0 0 3, 804 1743794 3, 296 1616164
1 0 0, 140 96107 0, 000 1739 1 0 0 3, 832 1750366 5, 316 679676
2 0 0, 152 97197 0, 000 1758 2 0 0 3, 832 1750366 6, 808 1541032
5 0 0, 172 98288 0, 000 1791 5 0 0 3, 836 1750366 11, 765 845117
10 0 0, 188 104991 0, 000 1829 10 0 0 3, 840 1750366 22, 321 845117
0 1 0, 148 96705 0, 000 1739 0 1 1 3, 832 1750366 8, 237 1345388
1 1 0, 160 96705 0, 000 1739 1 1 1 3, 840 1750366 10, 253 679137
2 1 0, 224 103426 0, 000 1828 5 1 1 3, 844 1750366 17, 177 845117
5 1 0, 236 104517 0, 000 1861 10 1 1 3, 848 1750366 27, 142 845117
10 1 0, 264 111220 0, 000 1899 0 3 1 3, 832 1750366 11, 929 1296220
0 2 0, 156 97795 0, 000 1758 1 3 1 3, 840 1750366 13, 957 679137
1 2 0, 220 103426 0, 000 1828 5 3 1 3, 860 1750366 20, 481 845117
2 2 0, 160 97795 0, 000 1758 10 3 1 3, 872 1750366 31, 722 845117
5 2 0, 240 104517 0, 000 1880 0 5 1 3, 864 1750366 15, 273 1320804
10 2 0, 268 111220 0, 000 1918 1 5 1 3, 872 1750366 17, 385 679137
0 5 0, 168 98886 0, 000 1792 10 5 1 3, 872 1750366 34, 058 845117
1 5 0, 240 104517 0, 000 1862 0 1 3 3, 860 1750366 11, 725 1345400
2 5 0, 244 104517 0, 000 1880 1 1 3 3, 864 1750366 13, 717 679137
5 5 0, 188 98886 0, 000 1792 10 1 3 3, 872 1750366 30, 718 845117
10 5 0, 276 105589 0, 000 1919 0 3 3 3, 860 1750366 14, 737 1658777
0 10 0, 196 105589 0, 000 1834 1 3 3 3, 868 1750366 16, 677 1026555
1 10 0, 256 111220 0, 000 1904 10 3 3 3, 876 1750366 32, 950 845117
2 10 0, 272 11220 0, 000 1922 0 5 3 3, 868 1750366 18, 141 1316462
5 10 0, 284 105589 0, 000 1921 1 5 3 3, 872 1750366 20, 145 679137
10 10 0, 220 105589 0, 000 1834 10 5 3 3, 880 1750366 37, 318 845117
50 10 0, 528 159213 0, 000 1946 10 10 10 3, 876 1750366 61, 120 845117
50 50 0, 564 152510 0, 004 1981 50 50 50 3, 884 1750366 310, 011 845117
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very slowly. The Table 2 reports the results for more complex formulas, with
two or three graded quantifiers. For some examples, one can observe that the
CPU time and the BDD size are not affected by the value of the constant, while
in the examples robot and abp8 with the second specification, one can notice an
increasing of the CPU time which grows.

Finally, let us note that we have used values for the grading constants in the
range [0, . . . , 50], but we think that in practice a reasonable upper bound should
be much smaller, as high values would mean a number of counterexamples too
big to deal with.

6 Conclusions and Future Works

In this paper we have considered an expressive extension of classical CTL and
have proved that the SAT problem is ExpTime-complete when the values in
the formula are represented in unary. An open problem is hence to establish the
complexity of the same problem when the values are in binary (recall that for the
case of the model checking problem the complexity for Graded CTL is the same
as CTL, even when the constants are expressed in binary). We have also shown
symbolic algorithms for model checking against specifications given in this logic
and have extended the NuSMV model checker to accept such specifications. The
experimental results have indeed shown that the usual performances of NuSMV
on classical CTL specifications are still retained.

Besides its augmented expressiveness, with respect to classical CTL spec-
ifications, the motivation to study this logic is in the possibility of reducing
debugging time. As it is well established, the generation of more than one coun-
terexample is highly desirable, though the size of the counterexamples and their
poor human-readability becomes more and more crucial, when more counterex-
amples are generated. One of the main problems arising is that of determining
counterexamples which are as much significant as possible. An approach to this
problem is given by a different semantics of graded-CTL which allows to dis-
tinguish system behaviors, satisfying a formula, that are completely disjoint.
This semantics, called edge-disjoint semantics, has been defined in [FNP10] and
requires the edge-disjointness of the paths satisfying a path-formula. With this
approach one can detect different counterexamples which depend on different and
completely independent “errors” in the model. Moreover, this edge-disjointness
requirement turns out to be useful also when fault tolerance is required. For this
reason, it should be useful to investigate the symbolic model checking problem
for edge-disjoint semantics of graded-CTL. Another aspect to consider is the
concurrency: partial order techniques have been used to avoid the state explo-
sion, c.f. [God90, GKPP99], also in symbolic model checking, [KGS06]. It would
be worthwhile to investigate whether such approach can be usefully applied in
our setting to get counterexamples which do not differ only for the interleaving
ordering of concurrent actions.

Finally, let us observe that during the model checking process, the system is
sometimes abstracted in order to deal with the state explosion problem of the
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Kripke structures. But since graded-CTL is a logic based on counting paths sat-
isfying given properties, it is not preserved under most of the usual abstractions
(since all of these modify the number of paths in the Kripke structure). Clearly,
this situation is inherent to every logic based on counting paths and/or suc-
cessors such as graded-μ-calculus [KSV02] and graded-HML (Hennessy-Milner
Logic) [CDL99]. However in [CDL99] the resource bisimulation has been intro-
duced to “discriminate processes according to the number of different compu-
tations they can perform to reach specific states”. It can be easily shown that
graded-CTL logic preserves the resource bisimulation.
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