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1. Introduction

Computational Tree Logic, CTL, is a well known branchingi temporal (modal) logic which let us
reason about how the behaviour of a system can evolve overlyntonsidering eitheall the possible
futuresor at least one possible futureHere we introduce thgradedCTL, obtained by augmenting
CTL with graded modalities that allow to reason about eititdeastor all but any number of futures.
In literature, the capability to express leastk andall but &, has been intensively studied in various
logic frameworks. In classical logics™* andV=* are calledcounting quantifierssee e.g. [16, 15, 22],
in modal logics they are callegradedmodalities, see e.g. [14, 24], and in description logics speaks
aboutnumber restrictiorof properties describing systems, see e.g. [17].

Recently complexity issues related to the satisfiabiligbpem for theu-calculus when the universal
and existential quantifiers are augmented with graded nitiedalhave been investigated in [19]. They
have shown that this problem isxETIME-complete, retaining thus the same complexity as in the case
of classicalu-calculus, though strictly extending it.

Here we consider model-checking problems using formulpsassed in graded-CTL. Model-checking
is an established process to check whether a model, refiresansystem, satisfies a given logical for-
mula, which expresses some behaviors of the system [5, B8]fotus of the paper is on the complexities
involved in the process of model-checking system modelgagspecifications given in this new logic.
For example, the formula™>* F—(wait = Y FcriticSection) expresses the fact that in several cases it
is possible that a waiting process never obtains the reggiessource. This new logic allows us also to
usenestedgraded quantifiers to express other interesting propedigsh as the safety property that “a
system always has at least two ways to reashfa staté(vG3~!F safe). Clearly formulas of this type
cannot be expressed in CTL and not even in clasgigzdlculus.

The motivation in the use of these graded modalities mairisea from the fact that during the
verification of a system design, a central feature of thertiegle of model-checking is the generation of
counterexamples. In fact the realization process for apystasses through the “Check/Analyze/Fix”
cycle: model-check the design of the system against sonieedgwopertiesy, analyze the generated
counterexamples to the properties, and re-design thensystgng to fix the errors. The analysis of the
counterexamples usually gives clues to that part of theesysbtodel where the specification failed. It is
therefore highly desirable to have as many significativentenexamples as possible simultaneously, c.f.
[3, 9, 11]. Up-to-date model-checkers, as NuUSMV and SPIN, return only one counterexample of
. Our aim here is first to efficiently get an answer to whetherdhare or not more counterexamples
(without explicitly generating them) and then getting msignificativeones, in the sense that by nesting
the graded quantifiers we can concentrate ourselves on mi@sting zones of the model. Actual
model checkers could generate more counterexamples tonalfmrbut in a “blind” way, that is without
user guidance. On the other side, the investigation of theptexities involved in the generation and the
analysis of the counterexamples is a central issue, asiegglalso in the survey [7] where the role and
the structure of counterexamples is investigated puttmgraphasis on the complexities related to the
generation problem.

Given a graded-CTL formula and a system model represented by a Kripke strudtyreur first
result is an algorithm to solve the model-checking problartime O(|R| - |¢]), the same running time
of the algorithm for classical CTL. Let us remark that thismexity does not depend at all on the
values representing the grading of the modalities in faetsilie|p| of the formula does not depend on
the representation of these values and is simply the nunilike temporal and boolean operators.
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The existential and universal quantifiers are dual opesatout differently from what happens in
classical CTL, in our logic to rewrite equivalent formulasterms of the dual quantifier implies an
increase of the size of the same formula. Thus to show theeatesult we actually have first given an
algorithm for formulas with only existential graded quéietis and then have proved how to deal with
universal graded quantifier to retain the same complexity.

However, the multiple counterexamples returned by thisritlym may partially overlap, while it can
be desirable in the analysis phase to detect completelypérdient traces where the specification fails.
To deal with this case, we have introduced a semantic for eeahpperators to requiredge-disjointness
of the paths representing the counterexamples. The samtmgysedn be applied also, for example, to
ensure that a “correct” system behavior tolerates a givemoeu of faults of the system. We have proved
that to model-check a system model against such specificaigoboth NP-hard andoNP-hard. The
reduction has been done from the cycle-packing problemgdtbblem to check whether there ake
disjoint cycles in a graph). This has suggested that forenespressing the existence of at Iefagtfinite
edge-disjoint paths globally satisfying) are hard to verify. We have then defined the still interesting
fragment of the logic obtained by dropping this kind of folamiand proved that the model-checking
problem can be solved in polynomial time in this case. In thiegraded logic, unless NB coNP, the
problem does not belong to NP. We have thus given an algofiththe fragment, showing that however
itis in PspACE Finally, we have considered the scenario in which only amgivumber of behaviors need
to be disjoint and all the remaining may overlap. In this casehave proved that the problemfized
parametertractable.

The paper is organized as follows: in Section 2 we recall gmdodefinition and results of CTL;
in Section 3 we introduce graded-CTL and define the modetithg problem for it; in Section 4 we
prove that this problem is solvable in polynomial time; ircéen 5 we study the edge-disjoint graded-
CTL model-checking problem. Moreover, we show that the sproblem restricted to a fragment of
graded-CTL is solvable in polynomial time, and that we cataiwba good algorithm for practical cases
by relaxing the edge-disjointness requirement; finally éctin 6 we give some conclusions and open
problems.

2. Computation Tree Logic

The temporal logic CTL [5] is a branching-time logic in whigach temporal operator, expressing
properties about a possible future, has to be preceded bgrdifier that specifies in how many possible
futures the property has to hold. So, in CTL one can expresgeptiies that have to be true either
immediately after now.X"), or each time from nowg), or from now until something happefig), and it

is possible to specify that each property must hold eitheome possible futurg®’) or in each possible
future (A). Formally, given a finite set adtomic propositionsA P, CTL is the set of formulag defined
as follows:

pi=p| Y1 |1 Adba | EXY1 | EGin | EYpilUaps

wherep € AP is an atomic proposition ang; and«, are CTL formulas.

The semantics of a CTL formula is defined with respect téripke Structureby means of the
classical relation=. As usual, a Kripke structure over a set of atomic propas#tid P, is a tuple
K = (S, sin, R, L), whereS is a finite set of states,,, € S is the initial state R C S x S is a transition
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relation with the property that for eaghe S there ist € S such thai(s,t) € R, andL : S — 24" isa
labeling function.

A path in K is denoted by the sequence of states (sg, s1, ... $,) Ofr by m = (sg, s1,...), ifitis
infinite. The length of a path, denoted by, is the number of states in the sequence, @pdenotes
thei-th states;.

Then, the relation= for a states € S of K is iteratively defined as follows:

e (K,s) Epe APIff p € L(s);
o (IC,s) &=y iff =((KC,s) = 11) (in short,(IC, s) = 11);
(]C, S) ): 1 A o iff (’C, S) lz Py and(lC, S) ): 9

(K,s) = EX1y iff there existss’ € S such that(s, s’) € Rand(K,s’) = ¢ (the path(s, ') is
called arevidenceof the formulaX,);

K, s) E EGy iff there exists an infinite path starting froms (i.e., 7[0] = s) such that for alll
>0, (K, [j]) | 11 (the pathr is called arevidenceof the formulaGi),);

s) | EYiUy, iff there exists a finite path with length|r| = r 4 1 starting froms such that
w[r]) E ¥2 and, for all0 < j < r, (K, n[j]) E v¢1 (the pathr is called arevidenceof the
formula¢1u¢2);

e (
j
. (K,
(K,

We say that a Kripke structur€ = (S, s;,,, R, L) modelsa CTL formulay iff (K, si) = ¢.

Note that the CTL formulas agtate-formulaswith the meaning that they have to be satisfied in a
single state of the system, while formulas of the fokfg, Gi1 andyU), are calledpath-formulas
(denoted generically in the rest of the paper with the syrihol

Observe that we have expressed the syntax of CTL with onegfdbksible minimal sets of operators.
Other temporal operators and the universal path quantfjén fact, can be easily derived from those.
For example, the classical abbreviatigh(eventually can be expressed &y, = TRUE U 1, and
for the universal path quantifier we have that'y; = ~EX—1, AGyr = ~EF )1, ApilUyy =
(mEG—2) A (RE(—p2)U (—th1 A —ha)).

The CTL model-checking is the problem of verifying whether a Kripke structutemodels a CTL
formula . Itis known that the CTL model-checking problem can be sbivelinear time, as asserted
in the following theorem.

Theorem 2.1. ([8])
Let € = (S, sin, R, L) be a Kripke structure ang be a CTL formula. The CTL model-checking
problem can be solved in tim@(|R| - |¢|).

3. Graded-CTL

In this section we introduce the graded-CTL which extendscthssical CTL by adding graded modal-
ities on the quantifier operators. As we have seen in the quevsection, classical CTL can be used
for reasoning about the temporal behavior of systems cerisfgl either “all the possible futures” or “at
least one possible future”. Graded modalities generalikk &llowing to reason about more than a given
number of possible distinct future behaviors. Let us firingethe notion oflistinct
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Let £ = (S, sin, R, L) be a Kripke structure. We say that two pathsandns on K aredistinct if
there exists an inde < ¢ < min{|m|, |m2|} such thatr; [i] # m2[i]. Observe that from this definition
if a path is the prefix of another path, then they are not dittin

We introduce thgraded existential path quantifigi=*, that requires the existence lof- 1 pairwise
distinct evidences of a path-formula. Therefore, giventaofatomic propositiondAP, the syntax of
graded-CTL is defined as follows:

©:=p| 1 | 1 Abe | EZRXY | EPRGYy | BZFepiUyy

wherep € AP, k is a non-negative integer and and+ are graded-CTL formulas.

The semantics of graded-CTL is still defined with respect kxipke structurelC = (S, s, R, L)
on the set of atomic proposition$P. In particular, for formulas of the form, -1 and; A - the
semantics is the same as in the classical CTL (see Secti¢io2)he remaining formulas, the semantics
is defined as follows:

e (K,s) = E>%0, with k > 0 and eithe) = X1 or @ = Gipy or @ = U)o, iff there existk + 1
pairwise distinct evidences éfstarting froms (note that>6 is equivalent tak6).

It is easy to observe that classical CTL is a proper fragmegtarled-CTL since the simple graded
formulaE>'X'p cannot be expressed in CTL, whereas any CTL formula is alsadeg-CTL formula.

We also consider the graded extension of the universal dfigantd=*, with the meaning thaall
the paths starting from a node but at mostc pairwise distinct paths, are evidences of a given path-
formula The quantifierA<* is the dual operator of>* and can obviously be re-written in terms of
—E>*. However, whileA=F X+, and AS*G1); can be easily re-written respectively-a&~* X -, and
—E>k F—)y, the transformation of the formul&=*+, 1415 with & > 0 in terms of—-E~* deserves more
attention. In fact, we have that=*«, 14+, is equivalent to~E>*— (1 U+,) (note that this formula is
not a graded-CTL formula because of the occurrence of therinost negation), that can be translated
in graded-CTL in the following way:

AR Uy = ~EZFG(py A ha) A =E7F(ihy A —ha)U (miby A ba) A 1)
k—1

/\( ~E7RTITG () A —ihe) VBT () A b )U(—thy A ) )

1=0

In fact observe that a path not satisfyipgl{ is a path that satisfies eithér = G(¢1 A —1)2) or
0 = (Y1 N —bo)U (1)1 A\ —1h9) (clearly, the paths satisfyingy are all distinct from the paths satisfying
62). Therefore the formuld>*—(y1U,) holds ins, if k£ + 1 pairwise distinct paths stem from this,
each satisfying eithet; or 6.

Thegraded-CTL model-checking is the problem of verifying whether a Kripke structuéemodels
a graded-CTL formulap. In the next sections we study the complexity of the graddd-@nodel-
checking problem with respect to the size of the Kripke d$tmec(expressed in terms of the number of
edges, as by our definitioi| > |S|), and to the size of the graded-CTL formula, where the siz@f
a graded-CTL formula is the number of the temporal and thégamooperators occurring in it.
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4. Graded-CTL Model-Checking

In this section we solve the graded-CTL model-checking lerobby showing an algorithm running in
linear time in the size of both the Kripke structure and thenfala . It is important to note here that
this complexity is independent from the values occurrinthengraded quantifiers gf. We then discuss
possible applications of model-checking system propesing graded-CTL formulas to generate more
than one counterexample. We will give an example of a muxelusion system for which we model-
check some liveness properties.

Let us first give a definition that we will use in the next prodi&iven a graph, aink-cycleis a cycle
not containing nodes with out-degree greater tharalledexit nodes

Now we prove two technical lemmas, that will be exploitedhia main theorem of the section. Let
K = (S, sin, R, L) be a Kripke structure.

Lemma4.l. Lety = E>*Gyy, k > 0, andG,, be the graph induced by the statesoivhere E>°G1),
holds. Then, given a statein G, (K, s) = v iff either there is anon-sink-cycleeachable froms, or
there aré: + 1 pairwise distinct finite paths connectirdo sink-cyclesn G,.

Proof:
(if): Lets be a state irGy, andC = (v, ...,v,—1) be a non-sink-cycle i/, reachable frony via a
finite path (s, uo, ..., u;,vp) in Gy. Consider an exit-node, say, 0 < j < h — 1 and a nodeu in

Gy such thatwy # v(j11) mod » @Nd(vj,wo) is an edge ofyy. Since(C, wo) = E>%Gq)y, there is an
infinite path(wg, w1, ...) starting fromw, and satisfyingj«;. There aré: + 1 pairwise distinct infinite
pathsm;, 0 < I < k, each satisfyingjy;, defined asr; = (s, ug, ..., u;, (C)!, vo, . . . ,Vj, Wy, . . .), Where
(C)! denotes the fact that; cycles! times onC. Thus(K,s) = . Finally, suppose there afe+ 1
pairwise distinct finite paths connectingo sink-cycles inG,. Since each of these such paths constitutes
an infinite path satisfying/v;, then(C, s) = .

(only if): If (K,s) | v then there aré + 1 pairwise distinct infinite pathsy, . .., m; starting froms

and satisfyingjv);. Since an infinite path on a Kripke structure either containen-sink-cycle, or ends

in a sink-cycle, the lemma follows from the fact that eaclestarn, . . . , 7, belongs taG,,. O

Lemmad.2. Lety = E>Fp Uiy, k> 0, andGy, be the graph induced by considering the statefs’ of
where E~%,U+» holds and by deleting the edges outgoing from states wheig not satisfied. Then,
given a states in G, (K, s) |= ¢ iff either there is anon-sink-cycle@eachable frons, or there aré: + 1
pairwise distinct finite simple paths frosto states wheré, holds.

Proof:
(if): Lets be a state irt7,, andC' = (vo, . .., v,—1) be a non-sink-cycle i+, reachable frons via a fi-
nite path(s, uo, . . . , u;, vo) in G,. Consider an exit-node;, for0 < j < h—1, and a nodev, in G, such

thatwo # v(j+1) mod » @Nd(vj, wo) is an edge irG'y. Since(kC, wo) = E>%n Uy, then inGy, there is
afinite path{wy, . . . , w,) starting fromwy and ending in a, such tha{/C, w, ) = 2. Consider thé+1
pairwise distinct finite paths;, 0 < I < k, defined asr; = (s, uq, ..., u;, (C)}, v, . .. LV, W0, - . . Wy ),
where(C)! denotes the fact that cyclesl times onC. SinceG,, does not contain edges out-going from
nodes where); is not satisfied, thefiC, x) |= «; for all z in 7;, except at most,., and therefore each

is anevidenceof Y1 Us. Thus(KC, s) = 1. Now, letn, ..., m, bek + 1 pairwise distinct finite simple
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paths (i.e. paths without cycles) connectintp nodes where); holds; from the definition oz, 7; is
anevidenceof 1 U, for all 0 < i < k, and thereforéC, s) = .

(only if): If (K, s) = 1 then there aré + 1 pairwise distinct finite paths, . . . , 7 starting froms and
ending in states satisfying,, and these are also pathsGh,. If the paths are either all simple or one of
them contains a non-sink cycle, then the proof is completae@ise letr (0 < ¢ < k) be the longest
simple prefix ofr; ending in a state wherg, holds. Obviouslys satisfiesi1U/1, and is distinct from
773 for all j # ¢ and this completes the proof of the lemma. O

An example of a system where conditions of Lemma 4.2 holdhéstodel of Figure 1. It satisfies
the formulak>* F (wait1 A EG-criticl), for all k > 0, as it contains reachable non-sink-cycles (one is
depicted with bold-faced edges).

Now we give the main result of the section showing that thelgdaCTL model-checking can be
solved in linear time independently from the values of thestants occurring in the formula.

Theorem 4.1. Let £ = (S, s, R, L) be a Kripke structure ang be a graded-CTL formula. The
graded-CTL model-checking problem can be solved in #geR| - |¢|).

Proof:

To solve the model-checking problem for a given Kripke duee/C and a given formula an algorithm
has to compute the subsgt € S s.t. (K,s) = ¢}. Our algorithm works on the sub-formulasof

¢ and for each state determines wheth€iiC, s) = v (and sets a boolean variable) to TRUE), (see
Algorithm 1). The algorithm uses a primitive functidfub which returns all the sub-formulas of a given
formulay and moreover for a path-formut if £>%6 is in Sub(y), thenE>%9 is in Sub(y) as well. In
particular we assume that such formulas are returned irdecreasing order of complexity, wiii>°9
precedingE~*6 in the sequence.

If a sub-formulay is of typep € AP, =, 11 A g, EZ0Gy, E>%) U, then the algorithm
(lines3 — 13) works as the classical CTL model-checking algorithm (sge[€]), and, if a sub-formula
is of type E>*X1)1, then the algorithm checks, for each statevhether|{t € S | (s,t) € R and
(K,t) = Y1} > k, (lines14 — 16).

Consider now a sub-formuka = E>*G1); with k& > 0 (line 17). This case is based on Lemma 4.1 In
fact the algorithm looks for the statesd, = (S’, R') (as defined in the statement of the lemma) from
which it is possible to reach a non-sink-cycle (lit®) and then looks for the states from whight 1
pairwise distinct finite paths start, each ending in singley (line21), after the deletion of the nodes
from which it is possible to reach a non-sink-cycle (I2%.

Let us now consider a sub-formuja= E>*1,U1, (line 23). In this case, the algorithm is based on
Lemma 4.2. In fact here too, similarly to what has been donthfocase of the operatgr, the algorithm
looks for the states iy, = (5, R') (as defined in the statement of the lemma) from which it is iptess
to reach a non-sink-cycle (ling6), and then deletes these nodes (7§ Finally it looks for the states
from whichk + 1 pairwise distinct finite paths start, each ending in statesret/» holds, (line2g),

The proof of the correctness of the algorithm can be easiheday induction on the length of the
formulas. Let us now evaluate the running-time of the atbari It is easy to see that to check a sub-
formula of typep € AP, =1, ¥1 A 1y, requiresO(|S|) and for a sub-formuldz>* X+, E>Gy,
E>%)1U1, the algorithm requires timé@(| R|). For a sub-formulaZ>*G+);, note that the set of nodes
from which it is possible to reach a non-sink-cycle can béally calculated in timeD(|R|) by using
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Algorithm 1: The algorithmGradedCTL(KC, ).

22
23
24
25
26
27
28

29

Inp

ut: A Kripke StructureC = (S, s;,, R, L) and a graded-CTL formula.

Output: For each state, s.o = TRUEIf (K, s) = ¢ ands.¢ = FALSE otherwise

Let

s.ap = FALSE for all s € S andy € Sub(yp);

foreach ¢ € Sub(y) do

end

casey) =p € AP: foreach s € Ss.t.p € L(s) dos.ip «+ TRUE;

casey = wpq: foreach s € S dos.yp «— —s.1)1;

case ) =1y Aibg: foreach s € S dos.ip «— (s.901 A s.409);

case ) = E0Gy:

S —{seS|syy =TRUE}; R — RN (S x 5);

foreach s € S’ s.t. 3 a cycle reachable fromin (S’, R') do s.i) < TRUE;

end

casey = E70U1Uy:

S"—{s € S|sy =TRUEOrs.)py = TRUE}; R — RN (S x 5);

foreach s € S’ s.t. 3 ¢ with t.4)o = TRUE reachable frons in (S, R") do s.1) «— TRUE;

end
case ) = E~F X, with k > 0:

| foreach s € Ss.t.|{(s,t) € R|t.¢y = TRUE}| > k do 5.¢) «— TRUE;
end
case ) = E~*Gy; withk > 0:
S {s€8|s.E>%Gy; = TRUE}; R «— RN (S x §');
foreach s € S’ s.t. 3 a non-sink-cycle reachable fromin (S’, R') do s.¢) «+ TRUE;
S"— S\ {s € Ss.t.s1=TRUE}; R — R'\ {(s,t) s.t.s.9) = TRUEOrt.1) = TRUE};
foreach s € S’ s.t. 3 k + 1 pairwise distinct finite paths fromto sink-cycles if.S’, R')
do s.y) <+ TRUE;
end
case ) = E~Fypilapy with k > 0:
S'— {s €S |s.E> Uy = TRUE};
R — (RN (S" xS\ {(s,t) € R| s.ipy = FALSE};
foreach s € S’ s.t. 3 a non-sink-cycle reachable fromin (S’, R') do s.¢) «+ TRUE;
S"— S\ {s € Ss.t.s1p=TRUE}; R — R'\ {(s,t) s.t.s.9) = TRUEOrt.1) = TRUE};
foreach s € S’ s.t. 3 k + 1 pairwise distinct finite paths fromto states wher& holds in
(S’, R') do s.1) + TRUE;

end
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a Depth First Search algorithm and, as soon as a cycle istdétethecking whether the cycle contains
an exit-node. Finally, also the set of nodes from which 1 paths leading to sink-cycles exist, can be
globally calculated in tim&(|R|) by executing a standard DFS algorithm on the graph with n@sod
from which it is possible to reach a non-sink-cycle. The gsialfor E>*1,1{1), is essentially the same
as that of the cas&>*Gyy. Since the size obub(y) is O(|¢|), then the overall complexity of the
algorithm isO(|R| - |¢|). O

Let us observe that in section 3 we have presented an exteokaur graded logic to include also
the graded universal quantifiet=*. There we have shown that it is possible to express formulas ¢
taining A<* in terms of=E>¥, but the size of the transformed formula is increased by &m dactor
proportional tok. Despite of this, in the following theorem we show that thededechecking problem
for this extended logic can be still solved in tird&|R| - |¢|) (here also the complexity is independent
from the constants in the formula).

Theorem 4.2. Let K = (S, sin, R, L) be a Kripke structure angd be a graded-CTL formula with pos-
sibly graded universal quantifiers. The graded-CTL modtieleking problem can be solved in time
O(IR| - |¢l).

Proof:

Similarly to Theorem 4.1, to solve the model-checking peablifor a given Kripke structur& and a
given formulay the algorithm works on the sub-formulasf ¢ and for each statedetermines whether
(K, 5) |= 9. If eitheryy = ASFX); orep = ASFGypy, then the problem can be solved with Algorithm 1
for the equivalent formula using the dual graded existeqgtiantifier. Lety) = A<Fy U+, and consider
astates € S. Letd; = Q(zpl A —|’L/12), 0y = (wl VAN —\wg)U(—\wl VAN —\wg) andmaml(s) andmamg(s) be
defined as follows

mazi(s) = max{0 <i <k + 1s.t. froms stem; pairwise distinct evidences 6éf }
maza(s) = max{0 <i < k+ 1s.t. froms stem: pairwise distinct evidences 6§ }.

From relation (1) given in section 3, it is easy to see tats) = ¢ iff maxi(s) + maxa(s) < k.

The lines19 — 21, 26 — 28 of Algorithm 1 can be easily modified to calculate, in tit¢|R|), the
setsM; = {max(s) s.t. s € S} and My = {maxs(s) s.t. s € S}. To calculate)M, in fact, consider
the graph induced by the states whérénolds. We first assigmax(s) = k + 1 for all the states from
which it is possible to reach a hon-sink-cycle and then weald3€&S on the remaining states to calculate
the number of pairwise distinct paths from each state to-sywhkes. In a similar way we can calculate
the set)M,. O

The graded-CTL model-checking can be used to obtain simedtasly more than one counterex-
ample for a formula. For example, consider the formdl&p expressing a simple liveness property:
in all behaviors something good eventually happens. Giverodel K, a counterexample is a path in
K where—p always holds. It can be useful to detect whether there are than a fixed numbekt of
behaviors in which the desired property fails. To get that,can test whetheiC, s;,) = E~*Gp.
Analogously, we can consider a safety property expressedH error: once fixed a numbet, if
(K,sim) = E>*F error then there are more tharwrong behaviors, each leading to an error. Note that
the algorithm we introduced in Theorem 4.1 can be modifieétiarn the required counterexamples.
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Figure 1. A mutual exclusion system.

Let us also consider the formuléG (wait = AFcritic) for the access control to a critical section
of a system. A counterexample for this formula is an “unfaith which is an evidence for the formula
EF(wait N EG—critic). In this case, it is useful to detect whether the model carigea more bad
behaviors. By using graded-CTL model-checking it is pdesib analyze three bad situations: the
first is to detect whether there are more “unfair” paths frém initial state, by verifying the formula
E>*M F(wait N EG-critic); the second is to verify whether there is a finite path fromitiitéal state
to a state wheravait holds, from which more “unfair” paths stem, and this can beedby testing the
formula EF (wait A E>*2G—critic), or, third, by using the formul&>*' F(wait A E>*2G—critic).

The following example shows the result of running NuSMV amdNSCadence for a system model
implementing mutual exclusion and having more than oneiupéh.

Example 4.1. Consider the modelin Figure 1 which violates the graded-@&Fiulay = AS'G(waitl =
AFeriticl).

When NuSMV (or also SMV Cadence [4, 21]) runs on this model andhe classical CTL formula
corresponding te, then it generates as a counterexample the path:

((idlel,idle2), (waitl, idle2), (waitl,idle2),...)

Then, if the user corrects this error by removing the saplon the state labeledvaitl,idle2), the
model-checker reports the second path

((idlel,idle2), (waitl,idle2), (waitl, wait2), (waitl, critic2), (waitl,idle2),...).

In practice most model-checkers implemeyinbolicalgorithms which manipulates state sets repre-
sented by BDD. In [13] we give a symbolic algorithm for ourtset (with both existential and universal
quantifiers) whose complexity ©@(2147! - |S| - k - |¢|), wherek is the maximum value occurring ip.
The extra factok is due to the fact that when we consider state sets repressyebolically one has
to take into account also all sub-formulas of the typeid, 0 < i < k, for eachE>*6 occurring in the
given formulagp.

Theorem 4.3. ([13])

Let € = (S, sin, R, L) be a Kripke structure represented symbolically on a setahit propositions
AP and lety be a graded-CTL formula. The graded-CTL model-checkingplera can be solved by a
symbolic algorithm in time? (21471 . |S| - k - ||), wherek is the maximum value occurring ip.
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In [13] some experimental results are reported by execu#sts on the symbolic algorithm. The
tests have shown that there is no increasing of both the tidelee BDDs size, when compared with
those of the classical symbolic-model checker NUSMV (sge/ldradedctl.dia.unisa.it).

5. Edge-Digoint Graded-CTL Mode-Checking

In this section we introduce a different semantics of gra@éd. to distinguish whether different behav-
iors of the system, satisfying a graded-CTL formula, aregeiely disjoint. This setting can be applied
also to ensure that a “correct” system behavior toleratéges gnumber of faults of the system.

The edge-disjoint semantics of graded-CTL is given by thaticn =4, which differs from the
previousl= relation only for the formulas of the following two typds* G+, and E>*v,U+,. In these
two cases it is required the edge-disjointness oftfidencesthat is of the infinite paths satisfyirgy/,
and of the finite paths satisfying 1/1),. Let us note that the model of Figure 1 does no longer satisfy t
formula E>2F(waitl A EG-criticl) now as there are only two disjoint paths that violate the fdem

Theedge-digoint graded-CTL model-checking is defined as the problem of determining whether
(K, sin) Eed e, for a Kripke structureC with initial states;,, and a graded-CTL formula.

We first prove that the problem is both NP-hard awNP-hard, and we give an upper bound show-
ing that it lies in BPACE Then we introduce a fragment of our logic for which the pesblhas a
polynomial time solution. To show this, we use techniquegctvlare standards for flow network prob-
lems, see e.g. [10]. Finally we give a polynomial time altfori for the case in which only a given
number of single actions of behaviors (edges) must be disgnd all the others may overlap. Note
that this problem is a generalization both of the graded-Qiddel-checking and of the edge-disjoint
graded-CTL model-checking, since it is equivalent to threker (resp. to the latter) when no actions (all
the actions) have to be disjoint.

5.1. Complexity

The proof of the hardness is given by a reduction from the &faecking problem, defined as follows:
given a directed grapty and an integen > 2, check whether irG there are at least edge-disjoint
cycles. The Cycle-Packing problem is known to be NP-corepete [2]).

Theorem 5.1. The edge-disjoint graded-CTL model-checking problem ihkgP-hard andcoNP-
hard.

Proof:
We first prove that edge-disjoint model-checking problem&-hard for specifications in the graded-
CTL fragmentF RAG containing only formulags™>*Gp, for an atomic propositiop andk > 0.

Given a graphG = (V, E) and an instancéG,n), n > 2, of the Cycle-Packing problem, let
K = (VU{s},s, R, L) be the Kripke structure obtained frotd by adding an initial staté ¢ V),
connected to all the other nodes, and by labeling each statéwith a single atomic propositiop.
Formally, K is defined on the atomic propositionsP = {p} in such a way thakR = E U {(8, s)
s.t.s € V}andL(s) = {p} forall s € VU {5}. Moreover, let us consider the graded-CTL formula
v = E>"~1Gp. Sinces is connected to each node@fand has no incoming edges, and sipdelds in
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every node, then it follows th&fC, §) .4 ¢ iff G contains at least edge-disjoint cycles. From the NP-

hardness of the Cycle-Packing problem, the edge-disjd®t®& model-checking problem is NP-hard as
well. The edge-disjoint model-checking problem for speaifions expressed with formulas of the type
- E>*Gp hence turns out to beoNP-hard. Thus the theorem holds. O

From the previous theorem, we have that the edge-disjoatteg-C TL model-checking problem is
not in NP (and not icoNP as well) unless N2 coNP. However, we show an upper bound for this
problem.

Theorem 5.2. There is an algorithm to solve the edge-disjoint graded-@iddel-checking problem in
spaceO(|R| - S| + |¢l).

Proof:
Consider the following simple algorithm to model-checknfiodas £>*6 with eitherd = Gy or 6 =
vile: if k > |R| then simply answefalse otherwise the Kripke structure is visited to look for paths
satisfyingf and, each time a path is found, a new visit is recursivelytedfatooking for other paths in
the remaining graph, untll+ 1 edge-disjoint paths are found. This algorithm can be easipyemented
by using polynomial space, as the overall size ofithe 1 paths is bounded bjR|.

Note that this algorithm works in time exponential &nif £ < |R| and in timeO(1) otherwise,
therefore its running time is exponential in the siz&oénd still independent frorh. O

5.2. A fragment

One question that naturally arises from Theorem 5.1 is vendths possible to define interesting frag-
ments of graded-CTL for which the edge-disjoint graded-Qiiddel-checking problem can be solved in
polynomial-time. In particular, the proof of Theorem 5.hgasts that formulas of the tyge* G, with

k > 0, are “hard” to verify. In this section we introduce a fragmesalled graded-RCTL, of graded-
CTL not containing formulas of the typB~*G, with & > 0 and show that there is a polynomial-time
algorithm for the model-checking problem. Note that thgfn@nt still is an extension of CTL and that
many significant non CTL properties can be expressed withiFor example, consider the property stat-
ing thatdo not exist more thakh bad behaviors such that a device does not start unless a kegdsed
such a property can be expressed in graded-RCTL with theularaB>" (—key U (start A —key)).

Theorem 5.3. Let K = (S, sin, R, L) be a Kripke structure ang be a graded-RCTL formula. The
edge-disjoint graded-RCTL model-checking problem foand, can be solved in timé&(|R|? - | S| -

[o1)-

Proof:
Since in graded-RCTL there are f5"*Gy); formulas, we have only to show how to check sub-formulas
W = E>FpUspe with k& > 0. To this aim we will use ideas from flow networks of the grapéxty.

Let us recall that low networkis a directed graph with sourcenode, adestinationnode, and with
edges having a non-negative capacity representing the ranobualata that can be moved through the
edge. Amaximum flowifrom the source to the destination is the maximum amount taf et a network
can move from the source to the destination.
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The algorithm is identical to Algorithm 1 for graded-CTL,tlvihe linesl 7 — 29 rewritten as follows
(whered ¢ S is a new node used as destination nadd)egree(t) returns the in-degree of a stdte
is the capacity function on the edges aldiz Flow(S, R, ¢, s, d) returns the maximum flow from to
d on the graph(S, R)):

17 caseh = E>Fu Uiy with k > 0:

18 | S« {s€8|s.E>% Uy = TRUE};

19 | RR—(RN(S"x8))\{(s,¢)| sy = FALSE};

20 | S~ SU{d}); R «— R U{(s,d)|se=TRUE};

21 forall e € R’ doc(e) = inDegree(s) if e = (s,d) andc(e) = 1 otherwise;
2 | foral s e S\ {d} s.t. MaxFlow(S", R/, ¢, s,d) > k do s.1) «— TRUE;

23 end

Our algorithm considers in linds3, 19, the graphG.;, subgraph ofC, of the states where the formula
E>% Uy holds (without the edges outgoing from states wheredoesn’t hold). Now one should
verify, for each state € S, the existence of + 1 edge-disjoint paths id7,, each starting frons and
ending in a state wherg, holds. To do this, the algorithm creates a netwk R') by adding toG.;

a new destination nodéand, for each state wherei), holds, an edgés, d) with capacity equal to the
in-degree ofs (the remaining edges have capaditysee Figure 2). Finally, for eache S\ {d} verifies
whether the maximum flow fromto d in this network is greater than

Gy (8", R')

Figure 2. Transformation af.; into (S’, R’). In the stateg andt’ the formulay, is satisfied.

To prove the correctness of the algorithm we have to show fbiaall s € S” \ {d}, the maximum
flow from s tod in (S, R) is equal to the maximum number of edge-disjoint paths staftom s and
ending in a state wherg, holds inG,,. Let us consider the networl5”, R") derived from(S’, R') by
substituting each edge, d) with capacityc > 1 with ¢ edge-disjoint new path&.t;,d), 1 < i < ¢,
with t; & S” andc(t, t;) = c(t;,d) = 1 (see Figure 3).

It is easy to see that the maximum flow franto d in (S’, R’) is equal to the maximum flow from
todin (S”, R"). Itis known that the maximum flow from to d in a network with all unitary capacity
is equal to the maximum number of edge-disjoint paths frota d, see e.g. [10]. Lef(s,d) be the
maximum flow froms tod in (S”, R”). Since, from the construction, each path freto d in (S”, R”) is
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oG

(9", R (S",R")

Figure 3. Transformation dfS’, R’) into (S”, R").

ofthe form(s, ..., t,t;, d) where(s, ..., t)isapathinS’, R') starting froms and such thatC, t) = v,
then f (s, d) is also the maximum number of pairwise edge-disjoint patt{$1, R’) starting froms and
ending in a state wheng, holds.

The running-time of the algorithm on a sub-formula %+, U» depends on the time required to
calculate the maximum flow. Note that the total capacity & &uges entering id is at most|R],
therefore the maximum flow from any statedds upper bounded byR|. Then, by using for example
the classical Ford-Fulkerson algorithm (see e.g. [10§t works in timeO( f - | R|) (wheref is the value
of the maximum flow), the overall time complexity of the alglom is O(|R|? - |S| - |¢]). O

5.3. A parameterized version of the problem

LetKC = (S, sin, R, L) andR be a subset aR. We say that two paths, andr, in K are R-edge-disjoint
if there are no edges iR belonging to bothr; andm,. We introduce the relatioitfd which differs
from the finer relation=,, only for the formulas of the typ&>* G+, and E>*1U,. In particular,
we require the existence &f+ 1 pairwise R-edge-disjoint paths satisfyingy; or Y1ldrpa. Then, the
subset-edge-digoint graded-CTL model-checking requires to verify whethe(kC, s;,) =L, », for a
Kripke structureC, a setk C R, and a graded-CTL formula.

The lower bound to this problem obviously matches the lowmmid of the edge-disjoint graded-
CTL model-checking problem. However, in the following them we prove that the problem fixed
parametertractable, in fact we solve it in exponential time only in 8iee of R, obtaining thus a good
algorithm for practical cases.

Theorem 5.4. Let K = (S, s;, R, L) be a Kripke structureR C R and¢ be a graded-CTL formula.
The subset-edge-disjoint graded-CTL model-checking Iprolzan be solved with an algorithm whose
running time isO((4/5l - | R| + 2!8%) -S| - |¢|) and with space complexit@ (45| - |R| + |R| + |¢|).

Proof:

Since the difference between graded-CTL and subset-adnt graded-CTL model-checking is only
in the satisfiability of formulags>*#, with the path-formul@ being eithe® = Gy, or § = ¢, U1\, and

k > 0, the algorithm to solve our problem is identical to AlgonitH., but for the extra input valug,
and for the lines 17-29 replaced by these:
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17 case ) = E>F0 with 0 = Gipy or 6 = ¢ Us), andk > 0:

18 forall s € Sdo

19 I—{ie{k+1—|R|,...,k+1}|i>0and3 i pairwise distinct paths from
satisfyingd without using edges im?};

20 if I # () then

21 k—k+1—max{i|iel};

2 if & = 0 then s.¢) — TRUE; continue;

23 V — {T'|T is the set of edges dt occurring in an evidence @f};

24 E— {(T,T) eV |TnT =0},

25 if 3 a clique with sizé: in (V, E) then s.¢) — TRUE;

26 end

27 end

28 end

This part of the algorithm works as follows. Consider a state S. As the number of?-edge-
disjoint evidences of which use at least one edge belongingds bounded by}?\ itself, the number
of the remaining evidences @éf(not using edges of?) must be greater thah + 1 — |R| (otherwise
(K, s) bégl E>k9). Thus the algorithm first determines a numbelines 19-21, with the property that:
(K, s) |:fd E>kg if and only if there are: R-edge-disjoint evidences éfwhich use at least one edge
belonging toR. Then the graph\{,E), described in line€3 and24, is computed, such that a nodelin
is a set of edges deAwhich occur in an evidence dfin X and an edge i connects two disjoint such
sets. Thus(K, s) =1, E>F4 iff in the graph(V, E) there is a clique of sizé.

Let us evaluate the running time and the space required bglgjoeithm. Since the sét described
in line 19 is such thallZ| < |R|, the lines19-21 can be easily computed in tin®@(|R| - |R|) by using a
simple variation of Algorithm 1. Moreover, for a given subgeof R, the existence of an evidence of
6 which usesall the edges il” and possibly edges dt \ R, can be verified in tim&@(|R|), while the
set of edges outgoing froffi can be computed in tim@(2!% . IRI); therefore the grapty, E) can be
computed in time?(4/% . | R]). Finally, the existence of a clique of size< |R| can be verified in time
O(21EF),

The algorithm needs, to model-check a formala*¢ in a states € S, space® (4% . |R|) to store
the graph(V, E') and spac&(|R|) to calculate the path needed to verify whether a non-empigedii’
of Ris in V. Moreover, the algorithm globally needs oy |S| truth values for the sub-formulas (two
for the operands and one for the operator in each state)efidnerthe space required by the algorithm is
O™ - |R| + |R| + |o]). O

6. Conclusions
In this paper we have introduced graded-CTL as a more expeesstension of classical CTL. The

results presented are in the model-checking setting wigitiipations in this new logic. We have in-
vestigated the complexities involved in various scenai@i§rom a theoretical perspective. In [13] we
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describe a model-checker tool obtained by augmenting NuBithvthese grading modalities: we re-

port test results showing that the classical performanoeseatained. We believe that this framework
could turn out to be useful also in the verification of fauletant physical properties of networks. Let

us mention also a drawback of our setting: as said in thedottion the generation of more than one
counterexample is highly desirable, however the analyagestof the realization process of a system) is
critical also for the size of the counterexamples and the paman-readability of it.

One of the main concerns of the model checking setting, isthealledstate explosion problem
which leads to manage systems with a huge number of stategntémesting approach to this, is that
of Hierarchical State Machinefl, 20], where each state of the Kripke structure can also beapar-
node representing in turn a smaller structure. One poskihlee direction to work on, is to study the
graded-CTL in this setting.
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