
Fundamenta Informaticae XXI (2001) 1001–1017 1001

IOS Press

Model Checking for Graded CTL

Alessandro Ferrante
Dip.to di Informatica ed Applicazioni
Universit̀a di Salerno
ferrante@dia.unisa.it

Margherita Napoli
Dip.to di Informatica ed Applicazioni
Universit̀a di Salerno
napoli@dia.unisa.it

Mimmo Parente
Dip.to di Informatica ed Applicazioni
Universit̀a di Salerno
parente@dia.unisa.it

Abstract. Recently, complexity issues related to the decidability oftheµ-calculus, when the uni-
versal and existential quantifiers are augmented withgraded modalities, have been investigated by
Kupfermann, Sattler and Vardi ([19]). Graded modalities refer to the use of the universal and exis-
tential quantifiers with the added capability to express theconcept ofat leastk or all but k, for a
non-negative integerk. In this paper we study the Computational Tree Logic CTL, a branching time
extension of classical modal logic, augmented with graded modalities and investigate the complex-
ity issues with respect to the model-checking problem. We consider a system model represented by
a Kripke structureK and give an algorithm to solve the model-checking problem running in time
O(|K| · |ϕ|) which is hence tight for the problem (here|ϕ| is the number of temporal and boolean
operators and does not include the values occurring in the graded modalities). In this framework,
the graded modalities express the ability to generate a user-defined number of counterexamples to a
specificationϕ given in CTL. However, these multiple counterexamples can partially overlap, that is
they may share some behavior. We have hence investigated thecase when all of them are completely
disjoint. In this case we prove that the model-checking problem is both NP-hard andCONP-hard
and give an algorithm for solving it running in polynomial space. We have thus studied a fragment
of graded-CTL, and have proved that the model-checking problem is solvable in polynomial time.

Keywords: Model-checking, Computational Tree Logic, Graded Modalities.

Address for correspondence: Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università di Salerno
Via Ponte don Melillo - 84084 - Fisciano (SA) - Italy
A preliminary version of the paper appeared in the proceedings of ATVA ’08 [12], Automated Technology for Verification and
Analysis, 6th International Symposium.

1002 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

1. Introduction

Computational Tree Logic, CTL, is a well known branching-time temporal (modal) logic which let us
reason about how the behaviour of a system can evolve over time by considering eitherall the possible
futuresor at least one possible future. Here we introduce thegraded-CTL, obtained by augmenting
CTL with graded modalities that allow to reason about eitherat leastor all but any number of futures.
In literature, the capability to expressat leastk andall but k, has been intensively studied in various
logic frameworks. In classical logics∃>k and∀≤k are calledcounting quantifiers, see e.g. [16, 15, 22],
in modal logics they are calledgradedmodalities, see e.g. [14, 24], and in description logics onespeaks
aboutnumber restrictionof properties describing systems, see e.g. [17].

Recently complexity issues related to the satisfiability problem for theµ-calculus when the universal
and existential quantifiers are augmented with graded modalities, have been investigated in [19]. They
have shown that this problem is EXPTIME-complete, retaining thus the same complexity as in the case
of classicalµ-calculus, though strictly extending it.

Here we consider model-checking problems using formulas expressed in graded-CTL. Model-checking
is an established process to check whether a model, representing a system, satisfies a given logical for-
mula, which expresses some behaviors of the system [5, 23]. The focus of the paper is on the complexities
involved in the process of model-checking system models against specifications given in this new logic.
For example, the formula∃>kF¬(wait ⇒ ∀FcriticSection) expresses the fact that in several cases it
is possible that a waiting process never obtains the requested resource. This new logic allows us also to
usenestedgraded quantifiers to express other interesting properties, such as the safety property that “a
system always has at least two ways to reach asafe state” (∀G∃>1F safe). Clearly formulas of this type
cannot be expressed in CTL and not even in classicalµ-calculus.

The motivation in the use of these graded modalities mainly arises from the fact that during the
verification of a system design, a central feature of the technique of model-checking is the generation of
counterexamples. In fact the realization process for a system passes through the “Check/Analyze/Fix”
cycle: model-check the design of the system against some desired propertiesϕ, analyze the generated
counterexamples to the properties, and re-design the system, trying to fix the errors. The analysis of the
counterexamples usually gives clues to that part of the system model where the specification failed. It is
therefore highly desirable to have as many significative counterexamples as possible simultaneously, c.f.
[3, 9, 11]. Up-to-date model-checkers, as NuSMV and SPIN [4,18], return only one counterexample of
ϕ. Our aim here is first to efficiently get an answer to whether there are or not more counterexamples
(without explicitly generating them) and then getting moresignificativeones, in the sense that by nesting
the graded quantifiers we can concentrate ourselves on more interesting zones of the model. Actual
model checkers could generate more counterexamples to a formula, but in a “blind” way, that is without
user guidance. On the other side, the investigation of the complexities involved in the generation and the
analysis of the counterexamples is a central issue, as explained also in the survey [7] where the role and
the structure of counterexamples is investigated putting an emphasis on the complexities related to the
generation problem.

Given a graded-CTL formulaϕ and a system model represented by a Kripke structureK, our first
result is an algorithm to solve the model-checking problem in timeO(|R| · |ϕ|), the same running time
of the algorithm for classical CTL. Let us remark that this complexity does not depend at all on the
values representing the grading of the modalities in fact the size|ϕ| of the formula does not depend on
the representation of these values and is simply the number of the temporal and boolean operators.

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1003

The existential and universal quantifiers are dual operators, but differently from what happens in
classical CTL, in our logic to rewrite equivalent formulas in terms of the dual quantifier implies an
increase of the size of the same formula. Thus to show the above result we actually have first given an
algorithm for formulas with only existential graded quantifiers and then have proved how to deal with
universal graded quantifier to retain the same complexity.

However, the multiple counterexamples returned by this algorithm may partially overlap, while it can
be desirable in the analysis phase to detect completely independent traces where the specification fails.
To deal with this case, we have introduced a semantic for temporal operators to requireedge-disjointness
of the paths representing the counterexamples. The same setting can be applied also, for example, to
ensure that a “correct” system behavior tolerates a given number of faults of the system. We have proved
that to model-check a system model against such specifications is both NP-hard andCONP-hard. The
reduction has been done from the cycle-packing problem (theproblem to check whether there arek
disjoint cycles in a graph). This has suggested that formulas expressing the existence of at leastk infinite
edge-disjoint paths globally satisfyingϕ) arehard to verify. We have then defined the still interesting
fragment of the logic obtained by dropping this kind of formulas and proved that the model-checking
problem can be solved in polynomial time in this case. In the full graded logic, unless NP= CONP, the
problem does not belong to NP. We have thus given an algorithmfor the fragment, showing that however
it is in PSPACE. Finally, we have considered the scenario in which only a given number of behaviors need
to be disjoint and all the remaining may overlap. In this casewe have proved that the problem isfixed
parametertractable.

The paper is organized as follows: in Section 2 we recall the basic definition and results of CTL;
in Section 3 we introduce graded-CTL and define the model-checking problem for it; in Section 4 we
prove that this problem is solvable in polynomial time; in Section 5 we study the edge-disjoint graded-
CTL model-checking problem. Moreover, we show that the sameproblem restricted to a fragment of
graded-CTL is solvable in polynomial time, and that we can obtain a good algorithm for practical cases
by relaxing the edge-disjointness requirement; finally in Section 6 we give some conclusions and open
problems.

2. Computation Tree Logic

The temporal logic CTL [5] is a branching-time logic in whicheach temporal operator, expressing
properties about a possible future, has to be preceded by a quantifier that specifies in how many possible
futures the property has to hold. So, in CTL one can express properties that have to be true either
immediately after now(X), or each time from now(G), or from now until something happens(U), and it
is possible to specify that each property must hold either insome possible futures(E) or in each possible
future(A). Formally, given a finite set ofatomic propositionsAP , CTL is the set of formulasϕ defined
as follows:

ϕ := p | ¬ψ1 | ψ1 ∧ ψ2 | EXψ1 | EGψ1 | Eψ1Uψ2

wherep ∈ AP is an atomic proposition andψ1 andψ2 are CTL formulas.
The semantics of a CTL formula is defined with respect to aKripke Structureby means of the

classical relation|=. As usual, a Kripke structure over a set of atomic propositions AP , is a tuple
K = 〈S, sin, R, L〉, whereS is a finite set of states,sin ∈ S is the initial state,R ⊆ S × S is a transition

1004 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

relation with the property that for eachs ∈ S there ist ∈ S such that(s, t) ∈ R, andL : S → 2AP is a
labeling function.

A path inK is denoted by the sequence of statesπ = 〈s0, s1, . . . sn〉 or byπ = 〈s0, s1, . . .〉, if it is
infinite. The length of a path, denoted by|π|, is the number of states in the sequence, andπ[i] denotes
thei-th statesi.

Then, the relation|= for a states ∈ S of K is iteratively defined as follows:

• (K, s) |= p ∈ AP iff p ∈ L(s);

• (K, s) |= ¬ψ1 iff ¬((K, s) |= ψ1) (in short,(K, s) 6|= ψ1);

• (K, s) |= ψ1 ∧ ψ2 iff (K, s) |= ψ1 and(K, s) |= ψ2;

• (K, s) |= EXψ1 iff there existss′ ∈ S such that(s, s′) ∈ R and(K, s′) |= ψ1 (the path〈s, s′〉 is
called anevidenceof the formulaXψ1);

• (K, s) |= EGψ1 iff there exists an infinite pathπ starting froms (i.e.,π[0] = s) such that for all
j ≥ 0, (K, π[j]) |= ψ1 (the pathπ is called anevidenceof the formulaGψ1);

• (K, s) |= Eψ1Uψ2 iff there exists a finite pathπ with length|π| = r + 1 starting froms such that
(K, π[r]) |= ψ2 and, for all0 ≤ j < r, (K, π[j]) |= ψ1 (the pathπ is called anevidenceof the
formulaψ1Uψ2);

We say that a Kripke structureK = 〈S, sin, R, L〉 modelsa CTL formulaϕ iff (K, sin) |= ϕ.
Note that the CTL formulas arestate-formulas, with the meaning that they have to be satisfied in a

single state of the system, while formulas of the formXψ1, Gψ1 andψ1Uψ2 are calledpath-formulas
(denoted generically in the rest of the paper with the symbolθ).

Observe that we have expressed the syntax of CTL with one of the possible minimal sets of operators.
Other temporal operators and the universal path quantifierA, in fact, can be easily derived from those.
For example, the classical abbreviationF (eventually) can be expressed asFψ1 = TRUE U ψ1, and
for the universal path quantifier we have thatAXψ1 = ¬EX¬ψ1, AGψ1 = ¬EF¬ψ1, Aψ1Uψ2 =
(¬EG¬ψ2) ∧ (¬E(¬ψ2)U(¬ψ1 ∧ ¬ψ2)).

TheCTL model-checking is the problem of verifying whether a Kripke structureK models a CTL
formulaϕ. It is known that the CTL model-checking problem can be solved in linear time, as asserted
in the following theorem.

Theorem 2.1. ([8])
Let K = 〈S, sin, R, L〉 be a Kripke structure andϕ be a CTL formula. The CTL model-checking
problem can be solved in timeO(|R| · |ϕ|).

3. Graded-CTL

In this section we introduce the graded-CTL which extends the classical CTL by adding graded modal-
ities on the quantifier operators. As we have seen in the previous section, classical CTL can be used
for reasoning about the temporal behavior of systems considering either “all the possible futures” or “at
least one possible future”. Graded modalities generalize CTL allowing to reason about more than a given
number of possible distinct future behaviors. Let us first define the notion ofdistinct.

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1005

LetK = 〈S, sin, R, L〉 be a Kripke structure. We say that two pathsπ1 andπ2 onK aredistinct if
there exists an index0 ≤ i < min{|π1|, |π2|} such thatπ1[i] 6= π2[i]. Observe that from this definition
if a path is the prefix of another path, then they are not distinct.

We introduce thegraded existential path quantifierE>k, that requires the existence ofk+1 pairwise
distinct evidences of a path-formula. Therefore, given a set of atomic propositionAP , the syntax of
graded-CTL is defined as follows:

ϕ := p | ¬ψ1 | ψ1 ∧ ψ2 | E
>kXψ1 | E

>kGψ1 | E
>kψ1Uψ2

wherep ∈ AP , k is a non-negative integer andψ1 andψ2 are graded-CTL formulas.
The semantics of graded-CTL is still defined with respect to aKripke structureK = 〈S, sin, R, L〉

on the set of atomic propositionsAP . In particular, for formulas of the formp, ¬ψ1 andψ1 ∧ ψ2 the
semantics is the same as in the classical CTL (see Section 2).For the remaining formulas, the semantics
is defined as follows:

• (K, s) |= E>kθ, with k ≥ 0 and eitherθ = Xψ1 or θ = Gψ1 or θ = ψ1Uψ2, iff there existk + 1
pairwise distinct evidences ofθ starting froms (note thatE>0θ is equivalent toEθ).

It is easy to observe that classical CTL is a proper fragment of graded-CTL since the simple graded
formulaE>1Xp cannot be expressed in CTL, whereas any CTL formula is also a graded-CTL formula.

We also consider the graded extension of the universal quantifier, A≤k, with the meaning thatall
the paths starting from a nodes, but at mostk pairwise distinct paths, are evidences of a given path-
formula. The quantifierA≤k is the dual operator ofE>k and can obviously be re-written in terms of
¬E>k. However, whileA≤kXψ1 andA≤kGψ1 can be easily re-written respectively as¬E>kX¬ψ1 and
¬E>kF¬ψ1, the transformation of the formulaA≤kψ1Uψ2 with k > 0 in terms of¬E>k deserves more
attention. In fact, we have thatA≤kψ1Uψ2 is equivalent to¬E>k¬(ψ1Uψ2) (note that this formula is
not a graded-CTL formula because of the occurrence of the innermost negation), that can be translated
in graded-CTL in the following way:

A≤kψ1Uψ2 ⇐⇒ ¬E>kG(ψ1 ∧ ¬ψ2) ∧ ¬E
>k(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) ∧ (1)

k−1∧

i=0

(¬E>k−1−iG(ψ1 ∧ ¬ψ2) ∨ ¬E
>i(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2))

In fact observe that a path not satisfyingψ1Uψ2 is a path that satisfies eitherθ1 = G(ψ1 ∧ ¬ψ2) or
θ2 = (ψ1 ∧¬ψ2)U(¬ψ1 ∧¬ψ2) (clearly, the paths satisfyingθ1 are all distinct from the paths satisfying
θ2). Therefore the formulaE>k¬(ψ1Uψ2) holds ins, if k + 1 pairwise distinct paths stem from this,
each satisfying eitherθ1 or θ2.

Thegraded-CTL model-checking is the problem of verifying whether a Kripke structureKmodels
a graded-CTL formulaϕ. In the next sections we study the complexity of the graded-CTL model-
checking problem with respect to the size of the Kripke structure (expressed in terms of the number of
edges, as by our definition|R| ≥ |S|), and to the size of the graded-CTL formula, where the size|ϕ| of
a graded-CTL formula is the number of the temporal and the boolean operators occurring in it.

1006 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

4. Graded-CTL Model-Checking

In this section we solve the graded-CTL model-checking problem by showing an algorithm running in
linear time in the size of both the Kripke structure and the formulaϕ. It is important to note here that
this complexity is independent from the values occurring inthe graded quantifiers ofϕ. We then discuss
possible applications of model-checking system properties using graded-CTL formulas to generate more
than one counterexample. We will give an example of a mutual-exclusion system for which we model-
check some liveness properties.

Let us first give a definition that we will use in the next proofs. Given a graph, asink-cycleis a cycle
not containing nodes with out-degree greater than1, calledexit nodes.

Now we prove two technical lemmas, that will be exploited in the main theorem of the section. Let
K = 〈S, sin, R, L〉 be a Kripke structure.

Lemma 4.1. Letψ = E>kGψ1, k > 0, andGψ be the graph induced by the states ofK whereE>0Gψ1

holds. Then, given a states in Gψ, (K, s) |= ψ iff either there is anon-sink-cyclereachable froms, or
there arek + 1 pairwise distinct finite paths connectings to sink-cyclesin Gψ.

Proof:
(if): Let s be a state inGψ andC = 〈v0, . . . , vh−1〉 be a non-sink-cycle inGψ reachable froms via a
finite path〈s, u0, . . . , ui, v0〉 in Gψ. Consider an exit-node, sayvj , 0 ≤ j ≤ h − 1 and a nodew0 in
Gψ such thatw0 6= v(j+1) mod h and(vj , w0) is an edge ofGψ. Since(K, w0) |= E>0Gψ1, there is an
infinite path〈w0, w1, . . .〉 starting fromw0 and satisfyingGψ1. There arek + 1 pairwise distinct infinite
pathsπl, 0 ≤ l ≤ k, each satisfyingGψ1, defined asπl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . .〉, where
(C)l denotes the fact thatπl cyclesl times onC. Thus(K, s) |= ψ. Finally, suppose there arek + 1
pairwise distinct finite paths connectings to sink-cycles inGψ . Since each of these such paths constitutes
an infinite path satisfyingGψ1, then(K, s) |= ψ.
(only if): If (K, s) |= ψ then there arek + 1 pairwise distinct infinite pathsπ0, . . . , πk starting froms
and satisfyingGψ1. Since an infinite path on a Kripke structure either containsa non-sink-cycle, or ends
in a sink-cycle, the lemma follows from the fact that each state inπ0, . . . , πk belongs toGψ . ⊓⊔

Lemma 4.2. Let ψ = E>kψ1Uψ2, k > 0, andGψ be the graph induced by considering the states ofK
whereE>0ψ1Uψ2 holds and by deleting the edges outgoing from states whereψ1 is not satisfied. Then,
given a states in Gψ , (K, s) |= ψ iff either there is anon-sink-cyclereachable froms, or there arek + 1
pairwise distinct finite simple paths froms to states whereψ2 holds.

Proof:
(if): Let s be a state inGψ andC = 〈v0, . . . , vh−1〉 be a non-sink-cycle inGψ , reachable froms via a fi-
nite path〈s, u0, . . . , ui, v0〉 inGψ. Consider an exit-nodevj, for 0 ≤ j ≤ h−1, and a nodew0 inGψ such
thatw0 6= v(j+1) mod h and(vj , w0) is an edge inGψ. Since(K, w0) |= E>0ψ1Uψ2, then inGψ there is
a finite path〈w0, . . . , wr〉 starting fromw0 and ending in awr such that(K, wr) |= ψ2. Consider thek+1
pairwise distinct finite pathsπl, 0 ≤ l ≤ k, defined asπl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . . wr〉,
where(C)l denotes the fact thatπl cyclesl times onC. SinceGψ does not contain edges out-going from
nodes whereψ1 is not satisfied, then(K, x) |= ψ1 for all x in πl, except at mostwr, and therefore eachπl
is anevidenceof ψ1Uψ2. Thus(K, s) |= ψ. Now, letπ0, . . . , πk bek + 1 pairwise distinct finite simple

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1007

paths (i.e. paths without cycles) connectings to nodes whereψ2 holds; from the definition ofGψ, πi is
anevidenceof ψ1Uψ2 for all 0 ≤ i ≤ k, and therefore(K, s) |= ψ.
(only if): If (K, s) |= ψ then there arek + 1 pairwise distinct finite pathsπ0, . . . , πk starting froms and
ending in states satisfyingψ2, and these are also paths inGψ. If the paths are either all simple or one of
them contains a non-sink cycle, then the proof is complete. Otherwise letπ′i (0 ≤ i ≤ k) be the longest
simple prefix ofπi ending in a state whereψ2 holds. Obviously,π′i satisfiesψ1Uψ2 and is distinct from
π′j for all j 6= i and this completes the proof of the lemma. ⊓⊔

An example of a system where conditions of Lemma 4.2 hold, is the model of Figure 1. It satisfies
the formulaE>kF(wait1∧EG¬critic1), for all k ≥ 0, as it contains reachable non-sink-cycles (one is
depicted with bold-faced edges).

Now we give the main result of the section showing that the graded-CTL model-checking can be
solved in linear time independently from the values of the constants occurring in the formula.

Theorem 4.1. Let K = 〈S, sin, R, L〉 be a Kripke structure andϕ be a graded-CTL formula. The
graded-CTL model-checking problem can be solved in timeO(|R| · |ϕ|).

Proof:
To solve the model-checking problem for a given Kripke structureK and a given formulaϕ an algorithm
has to compute the subset{s ∈ S s.t. (K, s) |= ϕ}. Our algorithm works on the sub-formulasψ of
ϕ and for each states determines whether(K, s) |= ψ (and sets a boolean variables.ψ to TRUE), (see
Algorithm 1). The algorithm uses a primitive functionSub which returns all the sub-formulas of a given
formulaϕ and moreover for a path-formulaθ, if E>kθ is in Sub(ϕ), thenE>0θ is in Sub(ϕ) as well. In
particular we assume that such formulas are returned in non-decreasing order of complexity, withE>0θ

precedingE>kθ in the sequence.
If a sub-formulaψ is of typep ∈ AP , ¬ψ1, ψ1 ∧ ψ2, E>0Gψ1, E>0ψ1Uψ2, then the algorithm

(lines3− 13) works as the classical CTL model-checking algorithm (see e.g. [6]), and, if a sub-formula
is of typeE>kXψ1, then the algorithm checks, for each states whether|{t ∈ S | (s, t) ∈ R and
(K, t) |= ψ1}| > k, (lines14 − 16).

Consider now a sub-formulaψ = E>kGψ1 with k > 0 (line 17). This case is based on Lemma 4.1 In
fact the algorithm looks for the states inGψ = (S′, R′) (as defined in the statement of the lemma) from
which it is possible to reach a non-sink-cycle (line19) and then looks for the states from whichk + 1
pairwise distinct finite paths start, each ending in sink-cycles (line21), after the deletion of the nodes
from which it is possible to reach a non-sink-cycle (line20).

Let us now consider a sub-formulaψ = E>kψ1Uψ2 (line 23). In this case, the algorithm is based on
Lemma 4.2. In fact here too, similarly to what has been done for the case of the operatorG, the algorithm
looks for the states inGψ = (S′, R′) (as defined in the statement of the lemma) from which it is possible
to reach a non-sink-cycle (line26), and then deletes these nodes (line27). Finally it looks for the states
from whichk + 1 pairwise distinct finite paths start, each ending in states whereψ2 holds, (line28),

The proof of the correctness of the algorithm can be easily done by induction on the length of the
formulas. Let us now evaluate the running-time of the algorithm. It is easy to see that to check a sub-
formula of typep ∈ AP , ¬ψ1, ψ1 ∧ ψ2, requiresO(|S|) and for a sub-formulaE>kXψ1, E>0Gψ1,
E>0ψ1Uψ2 the algorithm requires timeO(|R|). For a sub-formulaE>kGψ1, note that the set of nodes
from which it is possible to reach a non-sink-cycle can be globally calculated in timeO(|R|) by using

1008 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

Algorithm 1: The algorithmGradedCTL(K, ϕ).

Input: A Kripke StructureK = 〈S, sin, R, L〉 and a graded-CTL formulaϕ.
Output: For each states, s.ϕ = TRUE if (K, s) |= ϕ ands.ϕ = FALSE otherwise

Let s.ψ = FALSE for all s ∈ S andψ ∈ Sub(ϕ);1

foreach ψ ∈ Sub(ϕ) do2

case ψ = p ∈ AP : foreach s ∈ S s.t.p ∈ L(s) do s.ψ ← TRUE;3

case ψ = ¬ψ1: foreach s ∈ S do s.ψ ← ¬s.ψ1;4

case ψ = ψ1 ∧ ψ2: foreach s ∈ S do s.ψ ← (s.ψ1 ∧ s.ψ2);5

case ψ = E>0Gψ1:6

S′ ← {s ∈ S | s.ψ1 = TRUE}; R′ ← R ∩ (S′ × S′);7

foreach s ∈ S′ s.t.∃ a cycle reachable froms in (S′, R′) do s.ψ ← TRUE;8

end9

case ψ = E>0ψ1Uψ2:10

S′ ← {s ∈ S | s.ψ1 = TRUE or s.ψ2 = TRUE}; R′ ← R ∩ (S′ × S′);11

foreach s ∈ S′ s.t.∃ t with t.ψ2 = TRUE reachable froms in (S′, R′) do s.ψ ← TRUE;12

end13

case ψ = E>kXψ1 with k ≥ 0:14

foreach s ∈ S s.t. |{(s, t) ∈ R | t.ψ1 = TRUE}| > k do s.ψ ← TRUE;15

end16

case ψ = E>kGψ1 with k > 0:17

S′ ← {s ∈ S | s.E>0Gψ1 = TRUE}; R′ ← R ∩ (S′ × S′);18

foreach s ∈ S′ s.t.∃ a non-sink-cycle reachable froms in (S′, R′) do s.ψ ← TRUE;19

S′ ← S′ \ {s ∈ S s.t. s.ψ = TRUE}; R′ ← R′ \ {(s, t) s.t. s.ψ = TRUE or t.ψ = TRUE};20

foreach s ∈ S′ s.t.∃ k + 1 pairwise distinct finite paths froms to sink-cycles in(S′, R′)21

do s.ψ ← TRUE;
end22

case ψ = E>kψ1Uψ2 with k > 0:23

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = TRUE};24

R′ ← (R ∩ (S′ × S′)) \ {(s, t) ∈ R | s.ψ1 = FALSE};25

foreach s ∈ S′ s.t.∃ a non-sink-cycle reachable froms in (S′, R′) do s.ψ ← TRUE;26

S′ ← S′ \ {s ∈ S s.t. s.ψ = TRUE}; R′ ← R′ \ {(s, t) s.t. s.ψ = TRUE or t.ψ = TRUE};27

foreach s ∈ S′ s.t.∃ k + 1 pairwise distinct finite paths froms to states whereψ2 holds in28

(S′, R′) do s.ψ ← TRUE;
end29

end30

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1009

a Depth First Search algorithm and, as soon as a cycle is detected, checking whether the cycle contains
an exit-node. Finally, also the set of nodes from whichk + 1 paths leading to sink-cycles exist, can be
globally calculated in timeO(|R|) by executing a standard DFS algorithm on the graph with no nodes
from which it is possible to reach a non-sink-cycle. The analysis forE>kψ1Uψ2 is essentially the same
as that of the caseE>kGψ1. Since the size ofSub(ϕ) is O(|ϕ|), then the overall complexity of the
algorithm isO(|R| · |ϕ|). ⊓⊔

Let us observe that in section 3 we have presented an extension of our graded logic to include also
the graded universal quantifier,A≤k. There we have shown that it is possible to express formulas con-
tainingA≤k in terms of¬E>k, but the size of the transformed formula is increased by an extra factor
proportional tok. Despite of this, in the following theorem we show that the model-checking problem
for this extended logic can be still solved in timeO(|R| · |ϕ|) (here also the complexity is independent
from the constants in the formula).

Theorem 4.2. LetK = 〈S, sin, R, L〉 be a Kripke structure andϕ be a graded-CTL formula with pos-
sibly graded universal quantifiers. The graded-CTL model-checking problem can be solved in time
O(|R| · |ϕ|).

Proof:
Similarly to Theorem 4.1, to solve the model-checking problem for a given Kripke structureK and a
given formulaϕ the algorithm works on the sub-formulasψ of ϕ and for each states determines whether
(K, s) |= ψ. If eitherψ = A≤kXψ1 or ψ = A≤kGψ1, then the problem can be solved with Algorithm 1
for the equivalent formula using the dual graded existential quantifier. Letψ = A≤kψ1Uψ2 and consider
a states ∈ S. Let θ1 = G(ψ1 ∧ ¬ψ2), θ2 = (ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) andmax1(s) andmax2(s) be
defined as follows

max1(s) = max{0 ≤ i ≤ k + 1 s.t. froms stemi pairwise distinct evidences ofθ1}

max2(s) = max{0 ≤ i ≤ k + 1 s.t. froms stemi pairwise distinct evidences ofθ2}.

From relation (1) given in section 3, it is easy to see that(K, s) |= ψ iff max1(s) +max2(s) ≤ k.
The lines19 − 21, 26 − 28 of Algorithm 1 can be easily modified to calculate, in timeO(|R|), the

setsM1 = {max1(s) s.t. s ∈ S} andM2 = {max2(s) s.t. s ∈ S}. To calculateM1, in fact, consider
the graph induced by the states whereθ1 holds. We first assignmax1(s) = k + 1 for all the states from
which it is possible to reach a non-sink-cycle and then we usea DFS on the remaining states to calculate
the number of pairwise distinct paths from each state to sink-cycles. In a similar way we can calculate
the setM2. ⊓⊔

The graded-CTL model-checking can be used to obtain simultaneously more than one counterex-
ample for a formula. For example, consider the formulaAFp expressing a simple liveness property:
in all behaviors something good eventually happens. Given amodelK, a counterexample is a path in
K where¬p always holds. It can be useful to detect whether there are more than a fixed numberk of
behaviors in which the desired property fails. To get that, we can test whether(K, sin) |= E>kG¬p.
Analogously, we can consider a safety property expressed by¬EF error: once fixed a numberk, if
(K, sin) |= E>kF error then there are more thank wrong behaviors, each leading to an error. Note that
the algorithm we introduced in Theorem 4.1 can be modified to return the required counterexamples.

1010 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

idle1

idle2

idle2

critic1

idle1

idle1

wait2

idle2

wait1

critic1

critic2

wait2

wait1

wait2

critic2

wait1

Figure 1. A mutual exclusion system.

Let us also consider the formulaAG(wait ⇒ AFcritic) for the access control to a critical section
of a system. A counterexample for this formula is an “unfair”path which is an evidence for the formula
EF(wait ∧ EG¬critic). In this case, it is useful to detect whether the model can generate more bad
behaviors. By using graded-CTL model-checking it is possible to analyze three bad situations: the
first is to detect whether there are more “unfair” paths from the initial state, by verifying the formula
E>k1F(wait ∧ EG¬critic); the second is to verify whether there is a finite path from theinitial state
to a state wherewait holds, from which more “unfair” paths stem, and this can be done by testing the
formulaEF(wait ∧E>k2G¬critic), or, third, by using the formulaE>k1F(wait ∧ E>k2G¬critic).

The following example shows the result of running NuSMV and SMV Cadence for a system model
implementing mutual exclusion and having more than one unfair path.

Example 4.1. Consider the model in Figure 1 which violates the graded-CTLformulaϕ = A≤1G(wait1 ⇒
AFcritic1).

When NuSMV (or also SMV Cadence [4, 21]) runs on this model andon the classical CTL formula
corresponding toϕ, then it generates as a counterexample the path:

〈(idle1, idle2), (wait1, idle2), (wait1, idle2), . . .〉

Then, if the user corrects this error by removing the self-loop on the state labeled(wait1, idle2), the
model-checker reports the second path

〈(idle1, idle2), (wait1, idle2), (wait1, wait2), (wait1, critic2), (wait1, idle2), . . .〉.

In practice most model-checkers implementsymbolicalgorithms which manipulates state sets repre-
sented by BDD. In [13] we give a symbolic algorithm for our setting (with both existential and universal
quantifiers) whose complexity isO(2|AP | · |S| · k · |ϕ|), wherek is the maximum value occurring inϕ.
The extra factork is due to the fact that when we consider state sets represented symbolically one has
to take into account also all sub-formulas of the typeE>iθ, 0 < i < k, for eachE>kθ occurring in the
given formulaϕ.

Theorem 4.3. ([13])
Let K = 〈S, sin, R, L〉 be a Kripke structure represented symbolically on a set of atomic propositions
AP and letϕ be a graded-CTL formula. The graded-CTL model-checking problem can be solved by a
symbolic algorithm in timeO(2|AP | · |S| · k · |ϕ|), wherek is the maximum value occurring inϕ.

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1011

In [13] some experimental results are reported by executingtests on the symbolic algorithm. The
tests have shown that there is no increasing of both the time and the BDDs size, when compared with
those of the classical symbolic-model checker NuSMV (see http://gradedctl.dia.unisa.it).

5. Edge-Disjoint Graded-CTL Model-Checking

In this section we introduce a different semantics of graded-CTL to distinguish whether different behav-
iors of the system, satisfying a graded-CTL formula, are completely disjoint. This setting can be applied
also to ensure that a “correct” system behavior tolerates a given number of faults of the system.

The edge-disjoint semantics of graded-CTL is given by the relation |=ed, which differs from the
previous|= relation only for the formulas of the following two typesE>kGψ1 andE>kψ1Uψ2. In these
two cases it is required the edge-disjointness of theevidences, that is of the infinite paths satisfyingGψ1

and of the finite paths satisfyingψ1Uψ2. Let us note that the model of Figure 1 does no longer satisfy the
formulaE>2F(wait1 ∧ EG¬critic1) now as there are only two disjoint paths that violate the formula.

Theedge-disjoint graded-CTL model-checking is defined as the problem of determining whether
(K, sin) |=ed ϕ, for a Kripke structureK with initial statesin and a graded-CTL formulaϕ.

We first prove that the problem is both NP-hard andCONP-hard, and we give an upper bound show-
ing that it lies in PSPACE. Then we introduce a fragment of our logic for which the problem has a
polynomial time solution. To show this, we use techniques which are standards for flow network prob-
lems, see e.g. [10]. Finally we give a polynomial time algorithm for the case in which only a given
number of single actions of behaviors (edges) must be disjoint and all the others may overlap. Note
that this problem is a generalization both of the graded-CTLmodel-checking and of the edge-disjoint
graded-CTL model-checking, since it is equivalent to the former (resp. to the latter) when no actions (all
the actions) have to be disjoint.

5.1. Complexity

The proof of the hardness is given by a reduction from the Cycle-Packing problem, defined as follows:
given a directed graphG and an integern ≥ 2, check whether inG there are at leastn edge-disjoint
cycles. The Cycle-Packing problem is known to be NP-complete (see [2]).

Theorem 5.1. The edge-disjoint graded-CTL model-checking problem is both NP-hard andCONP-
hard.

Proof:
We first prove that edge-disjoint model-checking problem isNP-hard for specifications in the graded-
CTL fragmentFRAG containing only formulasE>kGp, for an atomic propositionp andk > 0.

Given a graphG = (V, E) and an instance(G,n), n ≥ 2, of the Cycle-Packing problem, let
K = 〈V ∪ {ŝ}, ŝ, R, L〉 be the Kripke structure obtained fromG by adding an initial statês 6∈ V,
connected to all the other nodes, and by labeling each state of K with a single atomic propositionp.
Formally,K is defined on the atomic propositionsAP = {p} in such a way thatR = E ∪ {(ŝ, s)
s.t. s ∈ V} andL(s) = {p} for all s ∈ V ∪ {ŝ}. Moreover, let us consider the graded-CTL formula
ϕ = E>n−1Gp. Sinceŝ is connected to each node ofG and has no incoming edges, and sincep holds in

1012 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

every node, then it follows that(K, ŝ) |=ed ϕ iff G contains at leastn edge-disjoint cycles. From the NP-
hardness of the Cycle-Packing problem, the edge-disjoint FRAG model-checking problem is NP-hard as
well. The edge-disjoint model-checking problem for specifications expressed with formulas of the type
¬E>kGp hence turns out to beCONP-hard. Thus the theorem holds. ⊓⊔

From the previous theorem, we have that the edge-disjoint graded-CTL model-checking problem is
not in NP (and not inCONP as well) unless NP= CONP. However, we show an upper bound for this
problem.

Theorem 5.2. There is an algorithm to solve the edge-disjoint graded-CTLmodel-checking problem in
spaceO(|R| · |S|+ |ϕ|).

Proof:
Consider the following simple algorithm to model-check formulasE>kθ with eitherθ = Gψ1 or θ =
ψ1Uψ2: if k ≥ |R| then simply answerfalse, otherwise the Kripke structure is visited to look for paths
satisfyingθ and, each time a path is found, a new visit is recursively started, looking for other paths in
the remaining graph, untilk+1 edge-disjoint paths are found. This algorithm can be easilyimplemented
by using polynomial space, as the overall size of thek + 1 paths is bounded by|R|.

Note that this algorithm works in time exponential ink if k < |R| and in timeO(1) otherwise,
therefore its running time is exponential in the size ofK and still independent fromk. ⊓⊔

5.2. A fragment

One question that naturally arises from Theorem 5.1 is whether it is possible to define interesting frag-
ments of graded-CTL for which the edge-disjoint graded-CTLmodel-checking problem can be solved in
polynomial-time. In particular, the proof of Theorem 5.1 suggests that formulas of the typeE>kGϕ, with
k > 0, are “hard” to verify. In this section we introduce a fragment, called graded-RCTL, of graded-
CTL not containing formulas of the typeE>kGϕ, with k > 0 and show that there is a polynomial-time
algorithm for the model-checking problem. Note that the fragment still is an extension of CTL and that
many significant non CTL properties can be expressed within it. For example, consider the property stat-
ing thatdo not exist more thank bad behaviors such that a device does not start unless a key ispressed:
such a property can be expressed in graded-RCTL with the formula¬E>k(¬key U(start ∧ ¬key)).

Theorem 5.3. Let K = 〈S, sin, R, L〉 be a Kripke structure andϕ be a graded-RCTL formula. The
edge-disjoint graded-RCTL model-checking problem, forK andϕ, can be solved in timeO(|R|2 · |S| ·
|ϕ|).

Proof:
Since in graded-RCTL there are noE>kGψ1 formulas, we have only to show how to check sub-formulas
ψ = E>kψ1Uψ2 with k > 0. To this aim we will use ideas from flow networks of the graph theory.

Let us recall that aflow networkis a directed graph with asourcenode, adestinationnode, and with
edges having a non-negative capacity representing the amount of data that can be moved through the
edge. Amaximum flowfrom the source to the destination is the maximum amount of data that a network
can move from the source to the destination.

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1013

The algorithm is identical to Algorithm 1 for graded-CTL, with the lines17−29 rewritten as follows
(whered 6∈ S is a new node used as destination node,inDegree(t) returns the in-degree of a statet, c
is the capacity function on the edges andMaxFlow(S,R, c, s, d) returns the maximum flow froms to
d on the graph(S,R)):

case ψ = E>kψ1Uψ2 with k > 0:17

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = TRUE};18

R′ ← (R ∩ (S′ × S′)) \ {(s, s′) | s.ψ1 = FALSE};19

S′ ← S′ ∪ {d}; R′ ← R′ ∪ {(s, d) | s.ψ2 = TRUE};20

forall e ∈ R′ do c(e) = inDegree(s) if e = (s, d) andc(e) = 1 otherwise;21

forall s ∈ S′ \ {d} s.t.MaxFlow(S′, R′, c, s, d) > k do s.ψ ← TRUE;22

end23

Our algorithm considers in lines18, 19, the graphGψ, subgraph ofK, of the states where the formula
E>0ψ1Uψ2 holds (without the edges outgoing from states whereψ1 doesn’t hold). Now one should
verify, for each states ∈ S, the existence ofk + 1 edge-disjoint paths inGψ each starting froms and
ending in a state whereψ2 holds. To do this, the algorithm creates a network(S′, R′) by adding toGψ
a new destination noded and, for each states whereψ2 holds, an edge(s, d) with capacity equal to the
in-degree ofs (the remaining edges have capacity1, see Figure 2). Finally, for eachs ∈ S′ \ {d} verifies
whether the maximum flow froms to d in this network is greater thank.

t

t′

d

1

1

1

1

1

2

3

t

t′

Gψ (S′, R′)

Figure 2. Transformation ofGψ into (S′, R′). In the statest andt′ the formulaψ2 is satisfied.

To prove the correctness of the algorithm we have to show that, for all s ∈ S′ \ {d}, the maximum
flow from s to d in (S′, R′) is equal to the maximum number of edge-disjoint paths starting froms and
ending in a state whereψ2 holds inGψ. Let us consider the network(S′′, R′′) derived from(S′, R′) by
substituting each edge(t, d) with capacityc > 1 with c edge-disjoint new paths〈t, ti, d〉, 1 ≤ i ≤ c,
with ti 6∈ S′ andc(t, ti) = c(ti, d) = 1 (see Figure 3).

It is easy to see that the maximum flow froms to d in (S′, R′) is equal to the maximum flow froms
to d in (S′′, R′′). It is known that the maximum flow froms to d in a network with all unitary capacity
is equal to the maximum number of edge-disjoint paths froms to d, see e.g. [10]. Letf(s, d) be the
maximum flow froms to d in (S′′, R′′). Since, from the construction, each path froms to d in (S′′, R′′) is

1014 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

d
d

1

1

1

1

1

2

3

t

t′

t

t′

t1

t2

t3

t′
1

t′
2

(S′, R′) (S′′, R′′)

Figure 3. Transformation of(S′, R′) into (S′′, R′′).

of the form〈s, . . . , t, ti, d〉where〈s, . . . , t〉 is a path in(S′, R′) starting froms and such that(K, t) |= ψ2,
thenf(s, d) is also the maximum number of pairwise edge-disjoint paths in (S′, R′) starting froms and
ending in a state whereψ2 holds.

The running-time of the algorithm on a sub-formulaE>kψ1Uψ2 depends on the time required to
calculate the maximum flow. Note that the total capacity of the edges entering ind is at most|R|,
therefore the maximum flow from any state tod is upper bounded by|R|. Then, by using for example
the classical Ford-Fulkerson algorithm (see e.g. [10]), that works in timeO(f · |R|) (wheref is the value
of the maximum flow), the overall time complexity of the algorithm isO(|R|2 · |S| · |ϕ|). ⊓⊔

5.3. A parameterized version of the problem

LetK = 〈S, sin, R, L〉 andR̂ be a subset ofR. We say that two pathsπ1 andπ2 inK areR̂-edge-disjoint

if there are no edges in̂R belonging to bothπ1 andπ2. We introduce the relation|=R̂
ed which differs

from the finer relation|=ed only for the formulas of the typeE>kGψ1 andE>kψ1Uψ2. In particular,
we require the existence ofk + 1 pairwiseR̂-edge-disjoint paths satisfyingGψ1 or ψ1Uψ2. Then, the
subset-edge-disjoint graded-CTL model-checking requires to verify whether(K, sin) |=R̂

ed ϕ, for a
Kripke structureK, a setR̂ ⊆ R, and a graded-CTL formulaϕ.

The lower bound to this problem obviously matches the lower bound of the edge-disjoint graded-
CTL model-checking problem. However, in the following theorem we prove that the problem isfixed
parametertractable, in fact we solve it in exponential time only in thesize ofR̂, obtaining thus a good
algorithm for practical cases.

Theorem 5.4. Let K = 〈S, sin, R, L〉 be a Kripke structure,̂R ⊆ R andϕ be a graded-CTL formula.
The subset-edge-disjoint graded-CTL model-checking problem can be solved with an algorithm whose
running time isO((4|R̂| · |R|+ 2|R̂|2) · |S| · |ϕ|) and with space complexityO(4|R̂| · |R̂|+ |R|+ |ϕ|).

Proof:
Since the difference between graded-CTL and subset-edge-disjoint graded-CTL model-checking is only
in the satisfiability of formulasE>kθ, with the path-formulaθ being eitherθ = Gψ1 or θ = ψ1Uψ2 and
k > 0, the algorithm to solve our problem is identical to Algorithm 1, but for the extra input valuêR,
and for the lines 17-29 replaced by these:

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1015

case ψ = E>kθ with θ = Gψ1 or θ = ψ1Uψ2 andk > 0:17

forall s ∈ S do18

I ← {i ∈ {k + 1− |R̂|, . . . , k + 1} | i ≥ 0 and∃ i pairwise distinct paths froms19

satisfyingθ without using edges in̂R};
if I 6= ∅ then20

k̂ ← k + 1−max{i | i ∈ I};21

if k̂ = 0 then s.ψ ← TRUE; continue;22

V ← {T |T is the set of edges of̂R occurring in an evidence ofθ};23

E ← {(T, T ′) ∈ V2 | T ∩ T ′ = ∅};24

if ∃ a clique with sizêk in (V, E) then s.ψ ← TRUE;25

end26

end27

end28

This part of the algorithm works as follows. Consider a states ∈ S. As the number ofR̂-edge-
disjoint evidences ofθ which use at least one edge belonging toR̂ is bounded by|R̂| itself, the number
of the remaining evidences ofθ (not using edges of̂R) must be greater thank + 1 − |R̂| (otherwise

(K, s) 6|=R̂
ed E

>kθ). Thus the algorithm first determines a numberk̂, lines 19-21, with the property that:

(K, s) |=R̂
ed E

>kθ if and only if there arêk R̂-edge-disjoint evidences ofθ which use at least one edge
belonging toR̂. Then the graph (V,E), described in lines23 and24, is computed, such that a node inV
is a set of edges of̂R which occur in an evidence ofθ in K and an edge inE connects two disjoint such
sets. Thus,(K, s) |=R̂

ed E
>kθ iff in the graph(V, E) there is a clique of sizêk.

Let us evaluate the running time and the space required by thealgorithm. Since the setI described
in line 19 is such that|I| ≤ |R̂|, the lines19-21 can be easily computed in timeO(|R| · |R̂|) by using a
simple variation of Algorithm 1. Moreover, for a given subset T of R̂, the existence of an evidence of
θ which usesall the edges inT and possibly edges ofR \ R̂, can be verified in timeO(|R|), while the

set of edges outgoing fromT can be computed in timeO(2|R̂| · |R̂|); therefore the graph(V, E) can be

computed in timeO(4|R̂| · |R|). Finally, the existence of a clique of sizêk ≤ |R̂| can be verified in time

O(2|R̂|
2

).

The algorithm needs, to model-check a formulaE>kθ in a states ∈ S, spaceO(4|R̂| · |R̂|) to store
the graph(V, E) and spaceO(|R|) to calculate the path needed to verify whether a non-empty subsetT
of R̂ is in V. Moreover, the algorithm globally needs only3 · |S| truth values for the sub-formulas (two
for the operands and one for the operator in each state). Therefore the space required by the algorithm is
O(4|R̂| · |R̂|+ |R|+ |ϕ|). ⊓⊔

6. Conclusions

In this paper we have introduced graded-CTL as a more expressive extension of classical CTL. The
results presented are in the model-checking setting with specifications in this new logic. We have in-
vestigated the complexities involved in various scenarios, all from a theoretical perspective. In [13] we

1016 A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL

describe a model-checker tool obtained by augmenting NuSmvwith these grading modalities: we re-
port test results showing that the classical performances are retained. We believe that this framework
could turn out to be useful also in the verification of fault tolerant physical properties of networks. Let
us mention also a drawback of our setting: as said in the introduction the generation of more than one
counterexample is highly desirable, however the analyze stage (of the realization process of a system) is
critical also for the size of the counterexamples and the poor human-readability of it.

One of the main concerns of the model checking setting, is theso-calledstate explosion problem
which leads to manage systems with a huge number of states. Aninteresting approach to this, is that
of Hierarchical State Machines[1, 20], where each state of the Kripke structure can also be asuper-
node representing in turn a smaller structure. One possiblefuture direction to work on, is to study the
graded-CTL in this setting.

References

[1] Alur, R., Yannakakis, M.: Model checking of hierarchical state machines,ACM Trans. Program. Lang. Syst.,
23(3), 2001, 273–303.

[2] Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles inundirected graphs,Journal of Algorithms, 48(1),
2003, 239–256.

[3] Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration,Int. J. Softw. Tools
Technol. Transf., 9(5), 2007, 429–445, ISSN 1433-2779.

[4] Cimatti, A., Clarke, E. M., Giunchiglia, F., Roveri, M.:NUSMV: A New Symbolic Model Verifier,Computer
Aided Verification, 1999, 495–499.

[5] Clarke, E., Emerson, E.: Usig Branching Time Temporal Logic to Synthesize Synchronization Skeletons,
Science of Computer Programming, 2, 1982, 241–266.

[6] Clarke, E., Grumberg, O., Peled, D.:Model Checking, The MIT Press, 1999.

[7] Clarke, E., Veith, H.: Counterexamples Revisited: Principles, Algorithms, Applications,Verification: Theory
and Practice, 2003, 208–224.

[8] Clarke, E. M., Emerson, E. A., Sistla, A. P.: Automatic verification of finite-state concurrent systems using
temporal logic specifications,ACM Transactions on Programming Languages and Systems, 8, 1986, 244–
263.

[9] Copty, F., Irron, A., Weissberg, O., Kropp, N., Kamhi, G.: Efficient Debugging in a Formal Verification
Environment,CHARME ’01, Springer-Verlag, London, UK, 2001, ISBN 3-540-42541-1, 275–292.

[10] Cormen, T., Leiserson, C., Rivest, R., Stein, C.:Introduction to Algorithms - Second Edition, The MIT Press,
2001.

[11] Dong, Y., Ramakrishnan, C., Smolka, S.: Model Checkingand Evidence Exploration,ECBS, 2003, 214–223.

[12] Ferrante, A., Napoli, M., Parente, M.: CTLModel-Checking with Graded Quantifiers,ATVA, 2008, 18–32.

[13] Ferrante, A., Napoli, M., Parente, M.: Symbolic Graded-CTL Model Checking,Submitted for publication,
2009, http://gradedctl.dia.unisa.it/publications/fnp09.pdf.

[14] Fine, K.: In So Many Possible Worlds,Notre Dame Journal of Formal Logic, 13(4), 1972, 516–520.

[15] Ganzinger, H., Meyer, C., Veanes, M.: The Two–VariableGuarded Fragment with Transitive Relations,LICS,
1999, 24–34.

A. Ferrante, M. Napoli, M. Parente / Model Checking for Graded CTL 1017

[16] Grädel, E., Otto, M., Rosen, E.: Two–Variable Logic with Counting is Decidable,LICS, 1997, 306–317.

[17] Hollunder, B., Baader, F.: Qualifying Number Restrictions in Concept Languages,KR, 1991, 335–346.

[18] Holzmann, G.: The Model Checker SPIN,IEEE Transactions on Software Engineering, 23(5), 1997, 279–
295, ISSN 0098-5589.

[19] Kupferman, O., Sattler, U., Vardi, M.: The Complexity of the Gradedµ–Calculus,CADE-18: Proceedings
of the 18th International Conference on Automated Deduction, Springer-Verlag, London, UK, 2002, ISBN
3-540-43931-5, 423–437.

[20] La Torre, S., Napoli, M., Parente, M., Parlato, G.: Verification of scope-dependent hierarchical state ma-
chines,Inf. Comput., 206(9-10), 2008, 1161–1177, ISSN 0890-5401.

[21] McMillan, K.: The Cadence SMV Model Checker, http://www.kenmcmil.com/psdoc.html.

[22] Pacholski, L., Szwast, W., Tendera, L.: Complexity Results for First–Order Two–Variable Logic with Count-
ing, SIAM Journal of Computing, 29(4), 2000, 1083–1117.

[23] Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CESAR,Proc. of the 5th
Colloquium on Intern. Symposium on Programming, Springer-Verlag, London, UK, 1982, ISBN 3-540-
11494-7, 337–351.

[24] Tobies, S.: PSPACE Reasoning for Graded Modal Logics,Journal Log. Comput., 11(1), 2001, 85–106.

