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Abstract. The use of the universal and existential quantifiers with the
capability to express the concept of at least k or all but k, for a non-
negative integer k, has been thoroughly studied in various kinds of logics.
In classical logic there are counting quantifiers, in modal logics graded
modalities, in description logics number restrictions.

Recently, the complexity issues related to the decidability of the μ-
calculus, when the universal and existential quantifiers are augmented
with graded modalities, have been investigated by Kupfermann, Sattler
and Vardi. They have shown that this problem is ExpTime-complete.

In this paper we consider another extension of modal logic, the Com-
putational Tree Logic CTL, augmented with graded modalities gener-
alizing standard quantifiers and investigate the complexity issues, with
respect to the model-checking problem. We consider a system model
represented by a pointed Kripke structure K and give an algorithm to
solve the model-checking problem running in time O(|K| · |ϕ|) which is
hence tight for the problem (where |ϕ| is the number of temporal and
boolean operators and does not include the values occurring in the graded
modalities).

In this framework, the graded modalities express the ability to gener-
ate a user-defined number of counterexamples (or evidences) to a spec-
ification ϕ given in CTL. However these multiple counterexamples can
partially overlap, that is they may share some behavior. We have hence
investigated the case when all of them are completely disjoint. In this
case we prove that the model-checking problem is both NP-hard and
coNP-hard and give an algorithm for solving it running in polynomial
space. We have thus studied a fragment of this graded-CTL logic, and
have proved that the model-checking problem is solvable in polynomial
time.

1 Introduction

Model-checking is the process, which is now becoming widely accepted, to check
whether a given model satisfies a given logical formula [CGP99, QS82], and it
can be applied to all kinds of logics. In this paper we consider model-checking
of formulas expressed in a logic which extends the classical Computational Tree
Logic, CTL, with graded modalities. Classical CTL can be used for reasoning
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about the temporal behavior of systems considering either all the possible futures
or at least one possible future. Here we use graded extensions on the existential
and universal quantifiers.

In the literature the capability to express at least k and all but k, given a
non-negative integer k, has been intensively studied in various logic frameworks.
In classical logics ∃>k and ∀≤k are called counting quantifiers, see e.g. [GOR97,
GMV99, PST00], in modal logics they are called graded modalities, see e.g.
[Fin72, Tob01], and in description logics one speaks about number restriction
of properties describing systems, see e.g. [HB91]. Recently the complexity issues
related to the decidability of the μ-calculus when the universal and existential
quantifiers are augmented with graded modalities, have been investigated in
[KSV02]. They have shown that this problem is ExpTime-complete, retaining
thus the same complexity as in the case of classical μ-calculus, though strictly
extending it.

In this paper we introduce the graded-CTL, obtained by augmenting CTL
with graded modalities that generalize standard path quantifiers and this logic,
here too, strictly extends classical CTL. With graded-CTL formulas we can rea-
son about more than any constant number of futures. For example, the formula
E>kF¬(wait ⇒ AFcriticSection) expresses the fact that in several cases it is
possible that a waiting process never obtains the requested resource. Note that
this logic allows also to grade nested path quantifiers to express other interesting
properties, such as the safety property that “a system always has at least two
ways to reach a safe state” (AGE>1Fsafe). Clearly formulas of this type cannot
be expressed in CTL and not even in classical μ-calculus. The focus in the paper
is on the complexities involved in the process of model-checking system models
against specifications given in this logic. In this framework the motivation in the
use of these graded modalities mainly arises from the fact that during the verifica-
tion of a system design, a central feature of the technique of model-checking is the
generation of counterexamples. In fact the realization process for a system passes
through the “Check/Analyze/Fix” cycle: model-check the design of the system
against some desired properties ϕ, analyze the generated counterexamples to
the properties, and re-design the system, trying to fix the errors. The analysis of
the counterexamples usually gives clues to that part of the system model where
the specification failed. It is therefore highly desirable to have as many significa-
tive counterexamples as possible simultaneously, c.f. [CG07, CIW+01, DRS03].
Usually up-to-date model-checkers, as NuSMV and SPIN [CCGR99, Hol97], re-
turn only one counterexample of ϕ or, by using the so-called onion ring tech-
nique, may determine all the counterexamples to a given non-graded formula.
Here we aim at getting more significative counterexamples, in the sense that
by nesting the graded quantifiers we can concentrate ourselves on zones of the
model for which we are more interested in. In other words with the actual model
checkers we can obtain counterexamples to a formula with only the first quan-
tifier which, in a sense, is graded, while in our scenario we can have also the
inner quantifiers which are graded. On the other side, the investigation of the
complexities involved in the generation and the analysis of the counterexamples
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is a central issue, as explained also in the survey [CV03] where the role and the
structure of counterexamples is nicely investigated putting an emphasis on the
complexities related to the generation problem.

Given a graded-CTL formula ϕ and a system model represented by a pointed
Kripke structure K, our first result is an algorithm to solve the model-checking
problem in time O(|K| · |ϕ|), the same running time of the algorithm for classical
CTL. Let us remark that this complexity does not depend at all on the values
representing the grading of the modalities and the size |ϕ| of the formula does
not depend on the representation of these values and is simply the number of
the temporal and boolean operators. However the multiple counterexamples re-
turned by this algorithm may overlap, while it can be desirable in the analysis
phase to detect independent traces where the specification fails. To deal with
this case, we have introduced a semantic for temporal operators to require the
edge-disjointness of the paths representing the counterexamples. The same set-
ting can be applied also, for example, to ensure that a “correct” system behavior
tolerates a given number of faults of the system. We have proved that to model-
check a system model against such specifications is both NP-hard and coNP-
hard. The reduction has been done from the cycle-packing problem (the problem
to check whether there are k disjoint cycles in a graph). This has suggested that
formulas of the type E>kGϕ (there exist at least k + 1 infinite edge-disjoint
paths globally satisfying ϕ) are hard to verify. We have then defined the still
interesting fragment of the logic obtained by dropping this kind of formulas and
proved that the model-checking problem can be solved in polynomial time in
this case. Clearly, unless NP = coNP, the problem, in the full logic, does not
belong to NP. We have then given an algorithm for it, showing that however
it is in Pspace. Finally, we have considered the scenario in which only a given
number of behaviors need to be disjoint and all the remaining may overlap. In
this case we have proved that the problem is fixed parameter tractable.

The paper is organized as follows: in Section 2 we give some preliminary defi-
nitions and introduce the model-checking problem for graded-CTL; in Section 3
we prove that the graded-CTL model-checking is solvable in polynomial time; in
Section 4 we study the edge-disjoint graded-CTL model-checking. Moreover we
show that the same problem restricted to a fragment of graded-CTL is solvable
in polynomial time, and that we can obtain a good algorithm in practical cases
by relaxing the edge-disjointness requirement; finally in Section 5 we give some
conclusions and open problems.

2 Graded-CTL Logic

In this section we introduce the graded-CTL logic which extends the classical
CTL logic with graded quantifiers. CTL can be used for reasoning about the
temporal behavior of systems considering either “all the possible futures” or “at
least one possible future”. Graded extension generalizes CTL to reasoning about
more than a given number of possible future behaviors.
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Let us start by giving the syntax of the logic. The graded-CTL operators
consist of the temporal operators U (“until”), G (“globally”) and X (“next”),
the boolean connectives ∧ and ¬, and the graded path quantifier E>k (“for at
least k+1 futures”).

Given a set of atomic propositions AP , the syntax of the graded-CTL formu-
las is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | E>kXϕ | E>kϕUϕ | E>kGϕ
where p ∈ AP and k is a non-negative integer.

We define the semantics of graded-CTL with respect to Kripke Structures.
As usual, a Kripke structure over a set of atomic propositions AP , is a tuple
K = 〈S, sin, R, L〉, where S is a finite set of states, sin ∈ S is the initial state,
R ⊆ S × S is a transition relation with the property that for each s ∈ S there is
t ∈ S such that (s, t) ∈ R, and L : S → 2AP is a labeling function.

A path in K is denoted by the sequence of states π = 〈s0, s1, . . . sn〉 or by
π = 〈s0, s1, . . .〉, if it is infinite. The length of a path, denoted by |π|, is the
number of states in the sequence, and π[i] denotes the state si, 0 ≤ i < |π|. Two
paths π1 and π2 are distinct if there exists an index 0 ≤ i < min{|π1|, |π2|} such
that π1[i] �= π2[i]. Observe that from this definition if a path is the prefix of
another path, then they are not distinct.

Let K = 〈S, sin, R, L〉 be a Kripke structure and s ∈ S be a state of K. The
concept of satisfiability for graded-CTL formulas is established by the relation
|=, defined as follows:

– (K, s) |= p, p ∈ AP , iff p ∈ L(s);
– (K, s) |= ϕ1 ∧ ϕ2 iff (K, s) |= ϕ1 and (K, s) |= ϕ2;
– (K, s) |= ¬ϕ iff ¬((K, s) |= ϕ) (shortly written, (K, s) �|= ϕ);
– (K, s) |= E>kXϕ iff there exist k + 1 different states s0, . . . , sk such that

1. (s, si) ∈ R and
2. (K, si) |= ϕ for all 0 ≤ i ≤ k;

– (K, s) |= E>kGϕ iff there exist k+1 pairwise distinct infinite paths π0, . . . , πk
such that for every 0 ≤ j ≤ k,
1. πj [0] = s and
2. for all h ≥ 0, (K, πj [h]) |= ϕ.

– (K, s) |=E>kϕ1Uϕ2 iff there exist k+1 pairwise distinct finite paths π0, . . . ,πk
of length i0, . . . , ik, respectively, such that for all 0 ≤ j ≤ k
1. πj [0] = s,
2. (K, πj [ij − 1]) |= ϕ2, and
3. for every 0 ≤ h < ij − 1, (K, πj [h]) |= ϕ1;

The graded-CTL formulas (as in the standard non-graded CTL) are also
called state-formulas and a state s in K satisfies a state-formula ϕ if (K, s) |= ϕ.
On the other side, Xϕ, Gϕ and ϕ1Uϕ2 are called as usual path-formulas. In
particular a path satisfying a path-formula θ is called an evidence of θ (note
that the evidences for X and U are finite paths). Then, for the fulfillment of a
formula E>kθ in a state s, it is required the existence of k+1 distinct evidences
of θ, starting from s.
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As usual, in our logic the temporal operator F (“eventually”) can be defined
in terms of the operators given above: E>kFϕ ⇔ E>k True U ϕ. Moreover,
it is easy to observe that CTL is a proper fragment of graded-CTL since the
simple formula E>1Xp cannot be expressed in CTL, whereas any CTL formula
is also a graded-CTL formula since the quantifier E is equivalent to E>0 and
for the universal quantifier A the standard relations hold, recalled here:

– AXϕ⇐⇒ ¬EX¬ϕ;
– AGϕ⇐⇒ ¬EF¬ϕ;
– Aϕ1Uϕ2 ⇐⇒ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)) ∧ ¬EG¬ϕ2.

Finally, we also consider the graded extension of the quantifier A, A≤k, with
the meaning that all the paths starting from a node s, except for at most k, satisfy
a given path-formula. The quantifier A≤k is the dual of E>k and can obviously
be re-written in terms of ¬E>k. We now formally define the model-checking
problem.

Given a Kripke structure K = 〈S, sin, R, L〉, and a graded-CTL formula ϕ, the
graded-CTL model-checking is the problem to verify whether (K, sin) |= ϕ.

In the next sections we study the complexity of the model-checking problem
with respect to the size of the Kripke structure (expressed in terms of the number
of edges, as by our definition |R| ≥ |S|), and to the size of the CTL formula,
where the size |ϕ| of a CTL formula ϕ is the number of the temporal and the
boolean operators occurring in it.

3 Graded-CTL Model-Checking

In this section we show that the graded-CTL model-checking problem can be
solved in polynomial time and independently from the values occurring in the
graded modalities, involved in the formulas. Then we discuss possible applica-
tions of our result to the generation of counterexamples.

Let us recall that an algorithm to solve the model-checking problem for a
given Kripke structure K and a given formula ϕ computes the subset {s ∈ S s.t.
(K, s) |= ϕ}.
Theorem 1. Let K = 〈S, sin, R, L〉 be a Kripke structure and ϕ be a graded-
CTL formula. The graded-CTL model-checking problem can be solved in time
O(|R| · |ϕ|).
Proof. To solve the problem we give an algorithm that works on the sub-formulas
ψ of ϕ and for each state s determines whether (K, s) |= ψ (and sets a boolean
variable s.ψ to True), (see Algorithm 1). The algorithm uses a primitive function
Sub(ϕ) which returns all the sub-formulas of ϕ and moreover for a path-formula
θ, if E>kθ is in Sub(ϕ), then E>0θ is in Sub(ϕ) as well. In particular we assume
that such formulas are returned in non-decreasing order of complexity, withE>0θ
preceding E>kθ in the sequence.

If a sub-formula ψ is of type p ∈ AP , ¬ψ1, ψ1∧ψ2, E>0Gψ1, E>0ψ1Uψ2, then
the algorithm (lines 3−13) works as the classical CTL model-checking algorithm
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[CGP99], and, if a sub-formula is of type E>kXψ1, then the algorithm checks,
for each state s whether |{t ∈ S | (s, t) ∈ R and (K, t) |= ψ1}| > k, (lines 14−16).

Algorithm 1. The algorithm GradedCTL(K, ϕ).
Input: A Kripke Structure K = 〈S, sin, R,L〉 and a graded-CTL formula ϕ.
Output: For each state s, s.ϕ = True if (K, s) |= ϕ and s.ϕ = False otherwise

Let s.ψ = False for all s ∈ S and ψ ∈ Sub(ϕ);1

forall ψ ∈ Sub(ϕ) do2

case ψ = p ∈ AP : forall s ∈ S s.t. p ∈ L(s) do s.ψ ← True;3

case ψ = ¬ψ1: forall s ∈ S do s.ψ ← ¬s.ψ1;4

case ψ = ψ1 ∧ ψ2: forall s ∈ S do s.ψ ← (s.ψ1 ∧ s.ψ2);5

case ψ = E>0Gψ1:6

S′ ← {s ∈ S | s.ψ1 = True}; R′ ← R ∩ (S′ × S′);7

forall s ∈ S′ s.t. ∃ a cycle reachable from s in (S′, R′) do s.ψ ← True;8

end9

case ψ = E>0ψ1Uψ2:10

S′ ← {s ∈ S | s.ψ1 = True or s.ψ2 = True}; R′ ← R ∩ (S′ × S′);11

forall s ∈ S′ s.t. ∃ t with t.ψ2 = True reachable from s in (S′, R′) do12

s.ψ ← True;
end13

case ψ = E>kXψ1 with k ≥ 0:14

forall s ∈ S s.t. |{(s, t) ∈ R | t.ψ1 = True}| > k do s.ψ ← True;15

end16

case ψ = E>kGψ1 with k > 0:17

S′ ← {s ∈ S | s.E>0Gψ1 = True}; R′ ← R ∩ (S′ × S′);18

forall s ∈ S′ s.t. ∃ a non-sink-cycle reachable from s in (S′, R′) do19

s.ψ ← True;
forall s ∈ S′ s.t. ∃ k + 1 distinct finite paths from s to sink-cycles in20

(S′, R′) do s.ψ ← True;
end21

case ψ = E>kψ1Uψ2 with k > 0:22

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = True};23

R′ ← (R ∩ (S′ × S′)) \ {(s, t) ∈ R | s.ψ1 = False};24

forall s ∈ S′ s.t. ∃ a non-sink-cycle reachable from s in (S′, R′) do25

s.ψ ← True;
forall s ∈ S′ s.t. ∃ k + 1 distinct finite paths from s to states where ψ226

holds in (S′, R′) do s.ψ ← True;
end27

end28

Consider now a sub-formula ψ = E>kGψ1 with k > 0 (line 17). Let a sink-
cycle be a cycle not containing exit-nodes, that is nodes with out-degree at least
2. The algorithm is based on the following claim, that we will prove later:

Claim 1: Let Gψ = (Sψ , Rψ) be the graph induced by the states where E>0Gψ1

holds; then, given a state s ∈ S, (K, s) |= ψ iff s ∈ Sψ and either there is a
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non-sink-cycle reachable from s, or there are k+1 distinct finite paths connecting
s to sink-cycles in Gψ.

The algorithm looks for the states in Gψ from which it is possible to reach a
non-sink-cycle (line 19) and then looks for the states from which k + 1 distinct
finite paths start, each ending in sink-cycles (line 20).

Let us now consider a sub-formula ψ = E>kψ1Uψ2 (line 22). In this case, the
algorithm is based on the following claim:

Claim 2: Let Gψ = (Sψ, Rψ) be the graph induced by considering the states
where E>0ψ1Uψ2 holds and by deleting the edges outgoing from states where ψ1

is not satisfied; then, given a state s ∈ S, (K, s) |= ψ iff s ∈ Gψ and either there
is a non-sink-cycle reachable from s, or there are k+1 distinct finite paths from
s to states where ψ2 holds.

Similarly to what has been done for the case of the operator G, now the algorithm
looks for the states in Gψ from which it is possible to reach a non-sink-cycle (line
25), and then looks for the states from which k + 1 distinct finite paths start,
each ending in states where ψ2 holds, (line 26). The proof of the correctness of
the algorithm can be easily done by induction on the length of the formulas.

To complete the proof let us first prove Claim 1.

(if): Let s ∈ Sψ and C = 〈v0, . . . , vh−1〉 be a cycle in Gψ reachable from s via a
finite path 〈s, u0, . . . , ui, v0〉 and containing at least one exit-node, say vj , 0 ≤ j ≤
h− 1 connected to a node w0 ∈ Sψ such that w0 �= v(j+1) mod h and (vj , w0) ∈
Rψ. Since (K, w0) |= E>0Gψ1, there is an infinite path 〈w0, w1, . . .〉 starting from
w0 and satisfying Gψ1 and there are k+1 pairwise distinct infinite paths πl, 0 ≤
l ≤ k, each satisfying Gψ1, defined as πl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . .〉,
where (C)l denotes the fact that πl cycles l times on C. Thus (K, s) |= ψ.
Finally, since a finite path from s to a sink-cycle in Gψ constitutes an infinite
path satisfying Gψ1, if there are k+ 1 distinct finite paths connecting s to sink-
cycles in Gψ then (K, s) |= ψ.

(only if): If (K, s) |= E>kGψ1 then obviously (K, s) |= E>0Gψ1, therefore
s ∈ Sψ. Let us consider k + 1 distinct infinite paths π0, . . . , πk starting from
s and satisfying Gψ1. Since an infinite path on a finite Kripke structure either
contains a non-sink-cycle, or ends in a sink-cycle, the claim follows from the fact
that each state in π0, . . . , πk belongs to Sψ.

Finally let us now prove Claim 2.

(if): Let s ∈ Sψ and C = 〈v0, . . . , vh−1〉 be a non-sink-cycle, reachable from
s via a finite path 〈s, u0, . . . , ui, v0〉. Let vj , for 0 ≤ j ≤ h − 1, be an exit-
node of C connected to a node w0 ∈ Sψ such that w0 �= v(j+1) mod h and
(vj , w0) ∈ Rψ. Since (K, w0) |= E>0ψ1Uψ2, then in Gψ there is a finite path
〈w0, . . . , wr〉 starting from w0 and ending in a wr such that (K, wr) |= ψ2.
Consider the k + 1 pairwise distinct finite paths πl, 0 ≤ l ≤ k, defined as
πl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . . wr〉, where (C)l denotes the fact that
πl cycles l times on C. Since Rψ does not contain edges out-going from nodes
where ψ1 is not satisfied, then (K, x) |= ψ1 for all x in πl, except at most wr, and
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therefore each πl is an evidence of ψ1Uψ2. Thus (K, s) |= ψ. Now, let π0, . . . , πk
be k + 1 distinct finite paths connecting s to nodes where ψ2 holds; from the
definition of Gψ , πi is an evidence of ψ1Uψ2 for all 0 ≤ i ≤ k, and therefore
(K, s) |= ψ, as well.

(only if): If (K, s) |= E>kψ1Uψ2 then obviously (K, s) |= E>0ψ1Uψ2, therefore
s ∈ Sψ. On the other side, from the semantics of E>kψ1Uψ2, there are k + 1
distinct finite paths starting from s and ending in states satisfying ψ2 and these
are also paths in Gψ , and this completes the proof of the claim.

Let us now evaluate the running-time of the algorithm. It is easy to see that to
check a sub-formula of type p ∈ AP , ¬ψ1, ψ1∧ψ2, requires O(|S|) and for a sub-
formula E>kXψ1, E>0Gψ1, E>0ψ1Uψ2 the algorithm requires time O(|R|). For
a sub-formula E>kGψ1, note that the set of vertices from which it is possible to
reach a non-sink-cycle can be globally calculated in time O(|R|) by using a Depth
First Search algorithm and, as soon as a cycle is detected, checking whether the
cycle contains an exit-node. Finally, also the set of vertices from which k + 1
paths leading to sink-cycles exist, can be globally calculated in time O(|R|) by
using a standard DFS algorithm. The analysis for E>kψ1Uψ2 is essentially the
same as that of the case E>kGψ1. Since the size of Sub(ϕ) is O(|ϕ|), then the
overall complexity of the algorithm is O(|R| · |ϕ|). ��
An example of Claim 2 is the model in Figure 1 which satisfies the formula
E>kF(wait1 ∧EG¬critic1), for all k ≥ 0, as contains reachable non-sink-cycles
(one is depicted with bold-faced edges).

The graded-CTL model-checking can be used to obtain simultaneously more
than one counterexample for a formula. For example, consider the formula AFp
expressing a simple liveness property: in all behaviors something good eventually
happens. Given a model K, a counterexample is a path in K where ¬p always
holds. It can be useful to detect whether there are more than a fixed number
k of behaviors in which the desired property fails. To get that, we can test
whether (K, sin) |= E>kG¬p. Analogously, we can consider a safety property
expressed by ¬EF error: once fixed a number k, if (K, sin) |= E>kF error then
there are more than k wrong behaviors, each leading to an error. Note that the
algorithm we introduced in Theorem 1 can be modified to return the required
counterexamples.

Let us also consider the formula AG(wait ⇒ AFcritic) for the access control
to a critical section of a system. A counterexample for this formula is an “unfair”
path which is an evidence for the formula EF(wait∧EG¬critic). In this case, it
is useful to detect whether the model can generate more bad behaviors. By using
graded-CTL model-checking it is possible to analyze three bad situations: the
first is to detect whether there are more “unfair” paths from the initial state, by
verifying the formula E>k1F(wait∧EG¬critic); the second is to verify whether
there is a finite path from the initial state to a state where wait holds, from which
more “unfair” paths stem, and this can be done by testing the formulaEF(wait∧
E>k2G¬critic), or, third, by using the formula E>k1F(wait ∧E>k2G¬critic).
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The following example shows the result of running NuSMV and SMV Cadence
for a system model implementing mutual exclusion and having more than one
unfair path.

Example 1. Consider the model in Figure 1 which violates the graded-CTL for-
mula ϕ = A≤1G(wait1 ⇒ AFcritic1).

idle1

idle2

idle2

critic1

idle1

idle1

wait2

idle2

wait1

critic1

critic2

wait2

wait1
wait2

critic2

wait1

Fig. 1. A mutual exclusion system

When NuSMV (or also SMV Cadence [CCGR99, McM]) runs on this model
and on the classical CTL formula corresponding to ϕ, then it generates as a
counterexample the path:

〈(idle1, idle2), (wait1, idle2), (wait1, idle2), . . .〉
Then, if the user corrects this error by removing the self-loop on the state labeled
(wait1, idle2), the model-checker reports the second path

〈(idle1, idle2), (wait1, idle2), (wait1, wait2), (wait1, critic2), (wait1, idle2), . . .〉.
In practice most model-checkers implement symbolic algorithms which ma-

nipulates state sets represented by BDD. We have hence studied a symbolic
algorithm for our setting whose complexity turns out to be O(2|AP | · k · |ϕ|),
where k is the maximum value occurring in ϕ. The extra factor k is due to the
fact that when we consider state sets represented symbolically one has to take
into account also all sub-formulas of the type E>iθ, 0 < i < k, for each E>kθ
occurring in the given formula ϕ. Thus we have the following theorem (whose
full proof is in the extended version of the paper [FNP08]).

Theorem 2. Let K = 〈S, sin, R, L〉 be a Kripke structure represented symboli-
cally on a set of atomic propositions AP and let ϕ be a graded-CTL formula.
The graded-CTL model-checking problem can be solved by a symbolic algorithm
in time O(2|AP | · k · |ϕ|), where k is the maximum value occurring in ϕ.

4 Edge-Disjoint Graded-CTL Model-Checking

In this section we introduce a different semantics of graded-CTL to distinguish
whether different behaviors of the system, satisfying a graded-CTL formula, are
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completely disjoint. This setting can be applied also to ensure that a “correct”
system behavior tolerates a given number of faults of the system.

The edge-disjoint semantics of graded-CTL is given by the relation |=ed,
which differs from the previous |= relation only for the formulas of the following
two types E>kGψ1 and E>kψ1Uψ2. In these two cases it is required the edge-
disjointness of the evidences, that is of the infinite paths satisfying Gψ1 and of
the finite paths satisfying ψ1Uψ2. Let us note that the model of Figure 1 does
no longer satisfy the formula E>2F(wait1 ∧ EG¬critic1) now as there are only
two disjoint paths that violate the formula.

The edge-disjoint graded-CTL model-checking is defined as the problem
of determining whether (K, sin) |=ed ϕ, for a Kripke structure K with initial state
sin and a graded-CTL formula ϕ.

We first prove that the problem is both NP-hard and coNP-hard, and we give
an upper bound showing that it lies in Pspace. Then we introduce a fragment of
our logic for which the problem has a polynomial time solution. To show this, we
use techniques which are standards for flow network problems, see e.g. [CLRS01].
Finally we give a polynomial time algorithm for the case in which only a given
number of single actions of behaviors (edges) must be disjoint and all the others
may overlap. Note that this problem is a generalization both of the graded-CTL
model-checking and of the edge-disjoint graded-CTL model-checking, since it is
equivalent to the former (resp. to the latter) when no actions (all the actions)
have to be disjoint.

4.1 Complexity

The proof of the hardness is given by a reduction from the Cycle-Packing prob-
lem, defined as follows: given a directed graph G and an integer n ≥ 2, check
whether in G there are at least n edge-disjoint cycles. The Cycle-Packing prob-
lem is known to be NP-complete (see [CPR03]).

Theorem 3. The edge-disjoint graded-CTL model-checking problem is both NP-
hard and coNP-hard.

Proof. We first prove that edge-disjoint model-checking problem is NP-hard
for specifications in the graded-CTL fragment FRAG containing only formulas
E>kGp, for an atomic proposition p and k ≥ 0.

Given a graph G = (V , E) and an instance (G,n), n ≥ 2, of the Cycle-Packing
problem, let K = 〈V ∪ {ŝ}, ŝ, R, L〉 be the Kripke structure obtained from G by
adding an initial state ŝ �∈ V , connected to all the other nodes, and by labeling
each state of K with a single atomic proposition p. Formally, K is defined on the
atomic propositions AP = {p} in such a way that R = E ∪ {(ŝ, s) s.t. s ∈ V}
and L(s) = {p} for all s ∈ V ∪ {ŝ}. Moreover, let us consider the graded-CTL
formula ϕ = E>n−1Gp. Since ŝ is connected to each node of G and has no incom-
ing edges, and since p holds in every node, then it follows that (K, ŝ) |=ed ϕ iff
G contains at least n edge-disjoint cycles. From the NP-hardness of the Cycle-
Packing problem, the edge-disjoint FRAG model-checking problem is NP-hard
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as well. The edge-disjoint model-checking problem for specifications expressed
with formulas of the type ¬E>kGp hence turns out to be coNP-hard. Thus the
theorem holds. ��
From the previous theorem, we have that the edge-disjoint graded-CTL model-
checking problem is not in NP (and not in coNP as well) unless NP = coNP.
However we now show an upper bound for this problem. In fact let us consider the
following simple algorithm to model-check formulas E>kθ with either θ = Gψ1

or θ = ψ1Uψ2: the Kripke structure is visited to find paths satisfying θ and, each
time a path is found, a new visit is recursively started, looking for other paths
in the remaining graph, until k+1 edge-disjoint paths are found. This algorithm
can be easily implemented by using polynomial space, as the overall size of the
k + 1 paths is bounded by |R|. Therefore we obtain the following theorem.

Theorem 4. There is an algorithm to solve the edge-disjoint graded-CTL model-
checking problem in space O(|R| · |S| + |ϕ|).

4.2 A Fragment

One question that naturally arises from Theorem 3 is whether it is possible to
define interesting fragments of graded-CTL for which the edge-disjoint graded-
CTL model-checking problem can be solved in polynomial-time. In particular,
the proof of Theorem 3 suggests that only formulas of the type E>kGϕ, with
k > 0, are “hard” to verify. In this section we introduce a fragment, called
graded-RCTL, of graded-CTL not containing formulas of the type E>kGϕ,
with k > 0 and show that for it there is a polynomial-time algorithm for the
model-checking problem. Note that the fragment is an extension of CTL and
that still many significant properties can be expressed within it. For example,
consider the property stating that do not exist more than k bad behaviors such
that a device does not start unless a key is pressed : such a property can be
expressed in graded-RCTL with the formula ¬E>k(¬key U(start ∧ ¬key)).
Theorem 5. Let K = 〈S, sin, R, L〉 be a Kripke structure and ϕ be a graded-
RCTL formula. The edge-disjoint graded-RCTL model-checking problem, for K
and ϕ, can be solved in time O(|R|2 · |S| · |ϕ|).
Proof. Since in the graded-RCTL there are no E>kGψ1 formulas, we have only
to show how to check sub-formulas E>kψ1Uψ2 with k > 0. To this aim we
will use ideas from flow networks of the graph theory. Let us recall that a flow
network is a directed graph with a source node, a destination node, and with
edges having a non-negative capacity representing the amount of data that can
be moved through the edge. A maximum flow from the source to the destination
is the maximum amount of data that a network can move from the source to the
destination in the time unit.

The algorithm is identical to Algorithm 1 for graded-CTL, with the lines 17−
27 rewritten as follows (where d �∈ S is the destination node, inDegree(s) returns
the in-degree of a state s and MaxFlow(S,R, c, s, d) returns the maximum flow
from s to d on the graph (S,R) with c as the capacity function on the edges):



CTL Model-Checking with Graded Quantifiers 29

case ψ = E>kψ1Uψ2 with k > 0:17

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = True} ∪ {d};18

R′ ← (R ∩ (S′ × S′)) \ {(s, t) | s.ψ1 = False} ∪ {(s, d) | s.ψ2 = True};19

forall e ∈ R′ do c(e) = inDegree(s) if e = (s, d) and c(e) = 1 otherwise;20

forall s ∈ S′ \ {d} s.t. MaxFlow(S′, R′, c, s, d) > k do s.ψ ← True;21

end22

Our algorithm considers the graph (S′, R′), subgraph of K, of the states where
the formula E>0ψ1Uψ2 holds (without the edges outgoing from states where ψ1

doesn’t hold), and adds a new destination node d with incoming edges from all
the nodes where ψ2 holds (the capacity of the link (s, d) is the in-degree of s,
while the remaining edges have capacity 1). It is known that in graphs with all
unitary edge capacities, the maximum flow is equal to the maximum number of
edge-disjoint paths from the source to the destination node, see e.g. [CLRS01].
However, it is easy to see that in our network the maximum flow from a node
s to d is equal to the maximum number of edge-disjoint paths from s to the
set {t ∈ S′ \ {d} | (t, d) ∈ R′}, therefore our algorithm has only to evaluate the
maximum flow from each state to d.

The running-time of the algorithm on a sub-formula E>kψ1Uψ2 depends on
the time required to calculate the maximum flow. Note that the total capacity
of the edges entering in d is at most |R|, therefore the maximum flow from any
state to d is upper bounded by |R|. Since in this case, the maximum flow can
be calculated in time O(|R|2), see e.g. [CLRS01], the overall time complexity of
the algorithm is O(|R|2 · |S| · |ϕ|). ��

4.3 A Parameterized Version of the Problem

Let K = 〈S, sin, R, L〉 and R̂ be a subset of R. We say that two paths π1 and
π2 in K are R̂-edge-disjoint if there are no edges in R̂ belonging to both π1 and
π2. We introduce the relation |=R̂

ed which differs from the finer relation |=ed only
for the formulas of the type E>kGψ1 and E>kψ1Uψ2. In particular, we require
the existence of k + 1 pairwise R̂-edge-disjoint paths satisfying Gψ1 or ψ1Uψ2.
Then, the subset-edge-disjoint graded-CTL model-checking requires to
verify whether (K, sin) |=R̂

ed ϕ, for a Kripke structure K, a set R̂ ⊆ R, and a
graded-CTL formula ϕ.

The lower bound to this problem obviously matches the lower bound of the
edge-disjoint graded-CTL model-checking problem. However, in the following
theorem we prove that the problem is fixed parameter tractable, in fact we solve
it in time exponential only in the size of R̂, obtaining thus a good algorithm for
practical cases.

Theorem 6. Let K = 〈S, sin, R, L〉 be a Kripke structure, R̂ ⊆ R and ϕ be
a graded-CTL formula. The subset-edge-disjoint graded-CTL model-checking
problem can be solved in time O((4|R̂| · |R| + 2|R̂|2) · |S| · |ϕ|) and in space
O(4|R̂| · |R̂| + |R| + |ϕ|).
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Proof. Since the difference between graded-CTL and subset-edge-disjoint
graded-CTL model-checking is only in the satisfiability of formulas E>kθ, with
the path-formula θ being either θ = Gψ1 or θ = ψ1Uψ2 and k > 0, the algorithm
to solve our problem is identical to Algorithm 1, but for the extra input value
R̂, and for the lines 17-27 replaced by these:

case ψ = E>kθ with θ = Gψ1 or θ = ψ1Uψ2 and k > 0:17

forall s ∈ S do18

I ← {i ∈ {k + 1 − |R̂|, . . . , k + 1} | i ≥ 0 and ∃ i distinct paths from s19

satisfying θ without using edges in R̂};
if I �= ∅ then20

k̂ ← k + 1 − max{i | i ∈ I};21

if k̂ = 0 then s.ψ ← True; continue;22

V ← {T |T is the set of edges of R̂ occurring in an evidence of θ};23

E ← {(T, T ′) ∈ V2 | T ∩ T ′ = ∅};24

if ∃ a clique with size k̂ in (V, E) then s.ψ ← True;25

end26

end27

end28

This part of the algorithm works as follows. Consider a state s ∈ S. As the
number of R̂-edge-disjoint evidences of θ which use at least one edge belonging
to R̂ is bounded by |R̂| itself, the number of the remaining evidences of θ (not
using edges of R̂) must be greater than k+1− |R̂| (otherwise (K, s) �|=R̂

ed E
>kθ).

Thus the algorithm first determines a number k̂, lines 19-21, with the property
that: (K, s) |=R̂

ed E
>kθ if and only if there are k̂ R̂-edge-disjoint evidences of θ

which use at least one edge belonging to R̂. Then the graph (V ,E), described in
lines 23 and 24, is computed, such that a vertex in V is a set of edges of R̂ which
occur in an evidence of θ in K and an edge in E connects two disjoint such sets.
Thus, (K, s) |=R̂

ed E
>kθ iff in the graph (V , E) there is a clique of size k̂.

Let us evaluate the running time and the space required by the algorithm.
Since the set I described in line 19 is such that |I| ≤ |R̂|, the lines 19-21 can be
easily computed in time O(|R| · |R̂|) by using a simple variation of Algorithm 1.
Moreover, for a given subset T of R̂, the existence of an evidence of θ which uses
all the edges in T and possibly edges of R \ R̂, can be verified in time O(|R|),
while the set of edges outgoing from T can be computed in time O(2|R̂| · |R̂|);
therefore the graph (V , E) can be computed in time O(4|R̂| · |R|). Finally, the
existence of a clique of size k̂ ≤ |R̂| can be verified in time O(2|R̂|2).

The algorithm needs, to model-check a formula E>kθ in a state s ∈ S, space
O(4|R̂| · |R̂|) to store the graph (V , E) and space O(|R|) to calculate the path
needed to verify whether a non-empty subset T of R̂ is in V . Moreover, the
algorithm globally needs only 3 · |S| truth values for the sub-formulas (two for
the operands and one for the operator in each state). Therefore the space required
by the algorithm is O(4|R̂| · |R̂| + |R| + |ϕ|). ��
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In the extended version of the paper [FNP08] we show how to modify this algo-
rithm to fit in polynomial space.

5 Discussion

In this paper we have introduced the graded-CTL as a more expressive extension
of classical CTL. The results presented are in the model-checking setting with
specifications in this logic. We have investigated the complexities involved in
various scenarios, all from a theoretical perspective. One possible future direction
to work on, is to verify in practice whether an existing model-checker tool could
be augmented with these grading modalities, retaining the usual performances.
We believe that this framework could turn out to be useful also in the verification
of fault tolerant physical properties of networks.

As said in the introduction, in [KSV02] the satisfiability problem has been
studied for the graded μ-calculus obtaining the same complexity as for the non-
graded logic. We have investigated the problem in our setting of graded-CTL
(reported in the extended version [FNP08]) and have proved that it is ExpTime-
complete, when the values in the formula are represented in unary. An open
problem is hence to establish the complexity when the values are in binary.

Another theoretical aspect to investigate is also with respect to the Linear
Temporal Logic LTL. Also here this graded framework is a strict extension of
the standard logic, but, differently to what happens for graded CTL, a straight-
forward algorithm to solve the model-checking problem, seems here to involve
the values representing the graded modalities.

Finally let us mention a drawback of our setting. As said in the introduction
the generation of more than one counterexample is highly desirable, however the
analyze stage (of the realization process of a system) is critical also for the size
of the counterexamples and the poor human-readability of it.
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